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ABSTRACT
Damage to audio signals is in practice common, yet undesirable. Information loss can
occur due to improper recording (low sample rate or dynamic range), transmission error
(sample dropout), media damage, or because of noise. The removal of such disturbances
is possible using inverse problems. Specifically, this work focuses on the situation where
sections of an audio signal of length in the order of tens of milliseconds are completely
lost, and the goal is to interpolate the missing samples based on the unimpaired context
and a suitable signal model. The first part of the dissertation is devoted to convex and
non-convex optimization methods, which are designed to find a solution to the interpo-
lation problem based on the assumption of sparsity of the time-frequency spectrum. The
general background and some algorithms are taken from the literature and adapted to
the interpolation problem, many modifications and experimental approaches are original.
The second part of the thesis focuses on the use of non-negative matrix factorization,
with which a probabilistic model of the signal spectrogram can be constructed and used
for the interpolation of the signal. This model is then used as the basis for a successful
reconstruction algorithm, to which two alternative methods are derived in the present
thesis. Finally, an extensive experimental validation of the methods on a group of mu-
sical signals is conducted. Using objective indicators of the quality of the interpolated
signal, it is shown, that in each class of methods, the proposed modifications lead to
a noticeable improvement in quality or convergence over the baseline methods. In par-
ticular, within the studied range of impairments, algorithms using factorization compete
with the current best methods for interpolating missing sections of the audio signal.

KEYWORDS
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ABSTRAKT
Poškození audio signálů je v praxi běžným, avšak nežádoucím faktem. Ke ztrátě in-
formace může dojít nevhodným záznamem (nízký vzorkovací kmitočet či dynamický
rozsah), chybou přenosu (výpadek vzorků), poškozením média či z důvodu rušení. Od-
straňování takových poruch je možné pomocí inverzních úloh. Tato práce se konkrétně
zaměřuje na situaci, kdy jsou úseky audio signálu o délce v řádu desítek milisekund
zcela ztraceny a cílem je chybějící vzorky interpolovat na základě kontextu a vhod-
ného modelu signálu. První část dizertační práce se věnuje metodám konvexní i nekon-
vexní optimalizace, které hledají řešení interpolační úlohy na základě předpokladu řídkosti
časově-kmitočtového spektra. Obecný základ i některé algoritmy jsou převzaté z litera-
tury a přizpůsobené interpolační úloze, řada modifikací a experimentálních přístupů je
originální. Druhá část práce je zaměřena na využití nezáporné faktorizace matic, s níž lze
sestavit pravděpodobnostní model spektrogramu signálu a tento využít pro jeho interpo-
laci. Z tohoto modelu pak vychází úspěšný rekonstrukční algoritmus, k němuž jsou v této
práci odvozeny dvě alternativní metody. Závěr práce se věnuje rozsáhlému experimen-
tálnímu ověření funkčnosti metod na skupině hudebních signálů. S využitím objektivních
ukazatelů kvality interpolovaného signálu je ukázáno, že v jednotlivých třídách metod
vedou navržené modifikace ke znatelnému zlepšení kvality či zlepšení konvergence oproti
metodám základním. V rámci studovaného rozsahu poškození pak zejména algoritmy vy-
užívající faktorizace konkurují současným nejlepším metodám pro interpolaci chybějících
úseků audio signálu.
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Introduction
Interpolation of data, i.e., the addition of a number into the middle of a series,
calculated based on the numbers before and after it [14], is a task that can be
dated back to the very beginning of the existence of data itself. This is due to
natural incompleteness of data, caused either by measurement errors, low frequency
of measurement, loss of previously recorded samples or presence of impulsive noise.
At the same time, incomplete information naturally complicate any further data
processing, analysis or reasoning.

Such issues are commonly encountered also in audio signals. While analog signals
represent the evolution of real-world phenomena over continuous time, the current
center of interest lies especially in the area of digital signal processing (DSP). Digital
audio signals, if not digitally synthesized from scratch, are sampled and quantized
versions of the initially continuous audio signals. As such, they are frequently cor-
rupted in many ways (or several ways combined): Samples of the signal may be
missing, contaminated with noise, or highly degraded, for example by physical dam-
age on the analog media such as LP or wax cylinder [15]. A particular case of noise
is induced by clipping, which occurs during recording or playback of an audio signal
that exceeds physical dynamic limits of the recording/playback device, or the A/D
or D/A converter. Parts of the signal may be also missing due to transmission er-
rors, especially packet loss [16]. Recently, methods for audio recording using optical
fibers as microphones have come to the forefront of interest, especially due to appli-
cations in audio forensics and the threat of eavesdropping [17]. However, physical
properties of such recording systems may introduce clicks with excessive amplitude,
preventing automated processing [18].

A natural question arises, whether such a degradation can be reversed, and to
what amount, which is referred to as the inverse problem. All the aforementioned
corruptions, especially the drop-out of samples, cause irreversible loss of information.
However, by supplementing prior assumptions about the original signal, inversion of
the degradation process may be possible. A typical example would be the upsam-
pling of an audio signal, i.e., interpolation of (evenly distributed) missing samples.
This common procedure can be also seen as an inverse problem which has a unique
solution under the assumption of band-limitedness of the original signal in the spec-
tral domain, as stated by the famous sampling theorem [19].

This thesis concerns a particular audio inverse problem, which is the interpola-
tion of missing audio samples, also known as audio inpainting [20]. In the context of
numerical mathematics, interpolation is possible with Lagrange interpolators and re-
lated models, which have historically been proposed for lossy speech coding and used
in pioneer audio inpainting methods [21, 22]. Similarly, very short drop-outs or ran-
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dom subsampling lead to rather simple interpolation tasks, where band-limitedness
or smoothness may serve as sufficient priors. However, the task of particular interest
and applicability is the interpolation of missing compact segments, i.e., gaps in the
signal. While the middle-length gaps with length in the range of tens of milliseconds
may appear as minor at first, their interpolation is a very challenging problem. The
challenge stems also from a psychoacoustical point of view, since improper treat-
ment of middle-length gaps introduces very disturbing audible artifacts in the signal.
However, the interpolation may still aim at precise recovery of the original infor-
mation. In the case of even longer gaps, methods using close neighborhoods of the
gap to interpolate it are not sufficient anymore. The only reliable possibility is to
analyze the signal semantically and copy or generate new information based on the
retrieved knowledge about the signal.

This thesis follows on previous research in the field of audio restoration and aims
at proposing novel, effective methods with the primary focus on interpolation of
musical audio signals. Chapter 1 serves as a brief, theoretical basis for the rest of
the thesis. It is followed by a review of state-of-the-art approaches to the problem
of audio signal interpolation in chapter 2. The flaws and possible space for improve-
ment of those methods are discussed, which allows to declare the aims and objectives
of this thesis in chapter 3. In the core part of the work, we focus on two classes of
optimization-based methods, which have in common the applicability in signal com-
pression. These are methods based on spectral sparsity in chapter 4 and methods
using low-rank representations and probabilistic modeling in chapter 5. Chapter 6
presents numerical experiments, aiming at objective evaluation of all the developed
methods and comparison with state-of-the-art methods, followed by conclusion of
the thesis and proposition of possible directions for future research.
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1 Concepts and conventions
This chapter will lay the theoretical foundations for the rest of the thesis. The aim
is not an exhaustive explanation, but rather a formal introduction of concepts and
a theoretical basis for the more practically oriented chapters.

1.1 Spaces and operators

1.1.1 Vector spaces

Since the full axiomatic development of linear algebra is not crucial for the spe-
cific field of signal processing, we will introduce only selected definitions and con-
ventions. For an overview of elementary terms such as vector (sub)space, linear
(in)dependence, basis etc., see any introductory material to linear algebra or func-
tional analysis, such as [23, 24].

Remark 1.1 (Notation). A generic vector space over a field F, where F represents
real or complex numbers, will be denoted 𝑉, 𝑊, . . . , while the individual elements
(vectors) will be denoted 𝑢, 𝑣, 𝑤, . . . Of particular importance to us are vectors in
the sense of 𝑁 -tuples, which will be denoted in bold: x, y, z, . . . ∈ F𝑁. Because of
the common interaction between vectors and matrices, such vectors of length 𝑁 will
be interchangeable with matrices of size 𝑁 × 1 (in other words, we consider column
vectors). The individual entries of vectors and matrices will be indexed starting
from 1, i.e., x = [𝑥1, . . . , 𝑥𝑁 ]⊤ ∈ F𝑁. In some cases, we will use also brackets:
x(𝑛) = 𝑥𝑛. Similarly, we will be able to select entries defined by a set of indices:
x({1, 2, 4}) = [𝑥1, 𝑥2, 𝑥4]⊤.

Definition 1.2 (Normed vector space [24, Definition 1.63]). A normed vector space
is a vector space 𝑉 over F, equipped with the function ‖ ·‖ : 𝑉 → F, called the norm
on 𝑉 , which satisfies for every 𝑢, 𝑣 ∈ 𝑉 and 𝛼 ∈ F the following axioms:

1. ‖𝑢 + 𝑣‖ ≤ ‖𝑢‖+ ‖𝑣‖, (triangle inequality)
2. ‖𝛼 · 𝑢‖ = |𝛼| ‖𝑢‖, (absolute homogeneity)
3. ‖𝑢‖ = 0⇔ 𝑢 = 0. (positive definiteness)

From the above axioms, it can be directly proven that norm is non-negative:
4. ‖𝑢‖ ≥ 0.

Example 1.3 (ℓ𝑝 norms). For the spaces R𝑁 or C𝑁 the usual norm is the Eu-
clidean norm: ‖x‖2 =

√︁
|𝑥1|2 + · · ·+ |𝑥𝑁 |2. Its square ‖x‖2

2 is also called energy
in the context of signals. Similarly, we can treat a matrix A ∈ F𝑀×𝑁 as a vector
[𝑎11, . . . , 𝑎𝑀𝑁 ] ∈ F𝑀𝑁 and compute its Euclidean norm, which is referred to as the
Frobenius norm ‖A‖2

F = ∑︀𝑀
𝑖=1

∑︀𝑁
𝑗=1 |𝑎𝑖𝑗|2.
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Fig. 1.1: Illustration of ℓ𝑝 norms in example 1.3. For different choices of 𝑝 we plot
the unit ball, i.e., the set of vectors x ∈ R2 such that ‖x‖𝑝 = 1.

Generalization of the Euclidean norm is the ℓ𝑝 norm, or 𝑝-norm, defined as

‖x‖𝑝 = (|𝑥1|𝑝 + · · ·+ |𝑥𝑁 |𝑝)
1
𝑝 . (1.1)

The concept of different norms is illustrated in figure 1.1.
For 1 ≤ 𝑝 ≤ ∞, it is a true norm (satisfying the axioms of the definition 1.2).

The limit case for 𝑝 = ∞ is the maximum norm ‖x‖∞ = max{|𝑥1| , . . . , |𝑥𝑁 |}. For
0 < 𝑝 < 1, the triangle inequality does not hold. The extreme case is 𝑝 = 0, which
symbolizes the vector sparsity, i.e., the number of its non-zero entries:

‖x‖0 = |{𝑛 | 𝑥𝑛 ̸= 0, 𝑛 = 1, . . . , 𝑁}|. (1.2)

Although conveniently denoted as ℓ0 norm, sparsity does not satisfy the axiom of
absolute homogeneity.

Definition 1.4 (Inner product space [24, Definition 1.57]). Inner product space is
a vector space 𝑉 over F, equipped with the inner (scalar) product ⟨·, ·⟩ : 𝑉 ×𝑉 → F,
which satisfies for all 𝑢, 𝑣, 𝑤 ∈ 𝑉 and for all 𝛼 ∈ F the following axioms:

1. ⟨𝑢 + 𝑣, 𝑤⟩ = ⟨𝑢, 𝑤⟩+ ⟨𝑣, 𝑤⟩, (additivity in the first argument)
2. ⟨𝛼 · 𝑢, 𝑣⟩ = 𝛼⟨𝑢, 𝑣⟩, (homogeneity in the first argument)
3. ⟨𝑢, 𝑣⟩ = ⟨𝑣, 𝑢⟩, (conjugate symmetry)
4. ⟨𝑢, 𝑢⟩ ≥ 0, while ⟨𝑢, 𝑢⟩ = 0⇔ 𝑢 = 0. (positive definiteness)

In the case of a space over R, the inner product is real, therefore the third axiom is
only symmetry (without conjugation).

Remark 1.5. Every inner product space is also a normed vector space, if we induce
the norm from the inner product: ‖𝑢‖ =

√︁
⟨𝑢, 𝑢⟩. However, the converse is not true,
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for example for the norms discussed in example 1.3, only the ℓ2 norm can be induced
by an inner product [25, Exercise 1.32].

Example 1.6. As mentioned in remark 1.1, we are particularly interested in vectors
in the form of 𝑁 -tuples. On the space R𝑁 or C𝑁, we usually define the inner product

⟨x, y⟩ = y⊤x =
𝑁∑︁

𝑛=1
𝑥𝑛𝑦𝑛, or ⟨x, y⟩ = y*x =

𝑁∑︁
𝑛=1

𝑥𝑛𝑦𝑛, (1.3)

respectively. It can be easily shown that this inner product induces the ℓ2 norm
from example 1.3.

Next, we want to discuss the representation of vectors. The primary possibility
is a basis, which allows to express any vector as a unique linear combination of
the basis elements. For example in the case of the space C𝑁, which has dimension
𝑁 , any basis can be organized as columns of the regular matrix B = [b1, . . . , b𝑁 ].
When we want to express a given vector x ∈ C𝑁 using the basis, we search for the
coefficients 𝑐1, . . . , 𝑐𝑁 such that x = ∑︀𝑁

𝑛=1 𝑐𝑛b𝑛, or, in matrix form, x = Bc. Since
B is regular, we can directly compute c = B−1x. In the case of orthonormal basis,
the vectors b1, . . . , b𝑁 are of unit length and perpendicular to each other, i.e.,

⟨b𝑖, b𝑗⟩ = 𝛿𝑖,𝑗 =

⎧⎪⎨⎪⎩1 for 𝑖 = 𝑗,

0 for 𝑖 ̸= 𝑗.
(1.4)

For such a basis, it holds B−1 = B*, which results in 𝑐𝑛 = b*
𝑛x = ⟨x, b𝑛⟩ and in the

reconstruction property [24, Proposition 1.70]

x =
𝑁∑︁

𝑛=1
⟨x, b𝑛⟩b𝑛. (1.5)

An example of such a situation is the (normalized) discrete Fourier transform (DFT),
which expresses a given vector using a basis consisting of complex exponentials –
this basis is of the form [24, Example 5.4]

b𝑛 = 1√
𝑁

[︁
𝑊

(𝑘−1)(𝑛−1)
𝑁

]︁
𝑘=1,...,𝑁

, where 𝑊𝑁 = e2πi/𝑁 and 𝑛 = 1, . . . , 𝑁.

(1.6)
In some cases, uniqueness of the representation is not needed, or it is even incon-

venient, such as in situations where we wish to utilize the sparsity of the representa-
tion. For these cases, the so-called frames provide a suitable generalization: Frame
is still a complete system (it generates the entire vector space) and allows a sim-
ple computation of coordinates for any vector in that space, but the representation
obtained does not need to be unique.
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Definition 1.7 (Frame [26, Definition 1.1.1]). Let 𝐹 = {𝑓1, . . . , 𝑓𝑀} be a subset of
a vector space 𝑉 over F with inner product ⟨·, ·⟩ and the induced norm ‖ · ‖. The
set 𝐹 is a frame for 𝑉 if there exist constants 0 < 𝐴 ≤ 𝐵 < ∞ such that for every
𝑢 ∈ 𝑉 it holds

𝐴‖𝑢‖2 ≤
𝑀∑︁

𝑚=1
|⟨𝑢, 𝑓𝑚⟩|2 ≤ 𝐵‖𝑢‖2. (1.7)

The constants 𝐴, 𝐵 are called frame bounds. If there exist 𝐴, 𝐵 such that 𝐴 = 𝐵,
then 𝐹 is called tight frame. Furthermore, if 𝐴 = 𝐵 = 1, 𝐹 is called Parseval (tight)
frame.

There are numerous equivalent characterizations of frames. A crucial property is
that thanks to the so-called Parseval inequality (1.7), any frame 𝐹 for 𝑉 spans the
space 𝑉 . In the case of tight frames, this is evident also from the following theorem.

Theorem 1.8 (Representation with tight frame [26, Proposition 1.1.4]). Let 𝐹 =
{𝑓1, . . . , 𝑓𝑀} be a tight frame for 𝑉 with bounds 𝐴 = 𝐵. Then for every 𝑢 ∈ 𝑉 it
holds

𝑢 = 1
𝐴

𝑀∑︁
𝑚=1
⟨𝑢, 𝑓𝑚⟩𝑓𝑚. (1.8)

Comparing (1.8) with (1.5), we see that tight frames provide a very similar
representation as bases. The difference is that frames can be redundant, i.e., it can
hold 𝑀 > 𝑁 , where 𝑀 denotes the number of elements of the frame and 𝑁 denotes
the space dimension.

The frame theory uses the notion of synthesis operator 𝑇 : F𝑀 → 𝑉 and its
adjoint, the analysis operator 𝐿 : 𝑉 → F𝑀 [26, p. 4]:

𝑇c =
𝑀∑︁

𝑚=1
𝑐𝑚𝑓𝑚 ∀c ∈ F𝑀, (1.9a)

𝐿𝑢 = [⟨𝑢, 𝑓𝑚⟩]𝑚=1,...,𝑀 ∀𝑢 ∈ 𝑉. (1.9b)

Equation (1.8) can be written using these operators as 𝑢 = 1
𝐴

𝑇𝐿𝑢 for all 𝑢 ∈ 𝑉 , or
𝑇𝐿 = 𝐴𝐼, where 𝐼 denotes the identity on the space 𝑉 .

Example 1.9 (Gabor frame, STFT, see e.g. [27]). This thesis will often make use
of the so-called Gabor frames, which are also known by the analysis operator as
short-time Fourier transform (STFT). The elements (atoms) of such a frame are
formed as translations and modulations of a chosen window function. A careful
choice of the window and the values of translation and modulation may lead to the
resulting system being a (tight) frame.

Consider the space C𝐿. A Gabor frame is defined by the window g ∈ C𝐿, as-
sumed to be locally supported and with length |supp(g)| = 𝑊 < 𝐿, translation
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parameter 𝑎 (we assume that 𝐿 is divisible by 𝑎) and the number of frequency bins
(modulations) 𝐹 . The coefficients of the STFT of a vector x ∈ C𝐿 can be organized
in a matrix C ∈ C𝐹 ×(𝐿/𝑎) such that1

C(𝑓 + 1, 𝑛 + 1) =
𝐿−1∑︁
𝑙=0

x(𝑙 + 1) g(𝑙 − 𝑎𝑛 + 1)e−2πi𝑙𝑓/𝐹⏟  ⏞  
complex conjugate of g𝑓,𝑛(𝑙+1)

, (1.10)

where 𝑓 = 0, . . . , 𝐹 −1 is the modulation index, 𝑛 = 0, . . . , 𝐿/𝑎−1 is the translation
index and (𝑙 − 𝑎𝑛) is computed modulo 𝐿. In line with example 1.6, we can write
C(𝑓 + 1, 𝑛 + 1) = ⟨x, g𝑓,𝑛⟩. Atoms of a Gabor frame are illustrated in figure 1.2.

Note that in the matrix form of C, the time-frequency structure of the coefficients
is evident. However, it may be practical to consider a vectorized form. For 𝑁 = 𝐿/𝑎,
we have C ∈ C𝐹 ×𝑁, which can be also represented in the form of a vector c ∈ C𝐹 𝑁.

Furthermore, note that equation (1.10) also reveals the connection of STFT with
the Fourier transform, that is, a column of the coefficient matrix C contains the
Fourier coefficients of a localized segment of the signal x, weighted by the window
g. Denoting F the (possibly oversampled2) DFT and x1, . . . , x𝑁 the (weighted)
signal segments, it holds

C = [Fx1, . . . , Fx𝑁 ]. (1.11)

Remark 1.10. Note that audio signals are commonly processed and/or visualized
in the form of spectrogram. Usually, it visualizes the power temporal spectrum
of the signal, i.e., the matrix P ∈ R𝐹 ×𝑁, 𝑝𝑓𝑛 = |𝑐𝑓𝑛|2, where 𝑐𝑓𝑛 are individual
time-frequency coefficients of the signal considered.

Remark 1.11 (Discrete-time signal formalism). Approaching discrete signals as
selections of points of continuous functions, or discrete functions, is not practical
when implementing algorithms for signal processing. As a convenient simplification,
we pose the following vector representation: A signal 𝑥 : {𝑡1, 𝑡2, . . . , 𝑡𝐿} → R will
be identified with a vector3 x = [𝑥(𝑡1), 𝑥(𝑡2), . . . , 𝑥(𝑡𝐿)]⊤ ∈ R𝐿. When working with
a vector x, one should keep in mind the underlying temporal information about
the samples. For example, consider a signal 𝑥 : 𝑇 → R and let us select two parts
𝑥1 = 𝑥|𝑇1 and 𝑥2 = 𝑥|𝑇2 of the same length, i.e., 𝑇1, 𝑇2 ⊂ 𝑇 and |𝑇1| = |𝑇2|. Then
the vectors x1 a x2 are elements of the same vector space R|𝑇1|, even though from the
perspective of discrete functions, 𝑥1 and 𝑥2 are functions of different time instances
𝑇1 and 𝑇2.

1http://ltfat.org/doc/gabor/dgt.html
2For example, the twice redundant DFT can be implemented as padding the signal to twice

its length and then computing DFT. The backward transform is the inverse DFT, followed by
cropping the result to the original length.

3Note that quantization is not considered in this thesis. If it was the case, signals should be
elements of a discrete space, such as {−32 768, . . . , 32 767}𝐿 for 16-bit quantization.
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Fig. 1.2: Illustration of a Gabor frame. Atoms from equation (1.10) are depicted
for a particular choice of vector length 𝐿 = 512, Hann window of length 𝑊 = 256,
window shift (translation) 𝑎 = 256 and 𝐹 = 256 frequency bins. The imaginary
part of any atom g0,𝑛 is zero, which corresponds to equation (1.10) with the choice
of a real window function g and 𝑓 = 0.

Remark 1.12 (Real versus complex signals). Since monophonic audio signals are
considered in this thesis, it is natural to identify the real signal space with R𝐿.
However, as will be mentioned below, linear operators are usually defined between
spaces over the same field, either R or C. This is inconvenient, since we shall make
use of the time-frequency representations, in particular using Gabor frames, which
utilize complex coefficients, see example 1.9. This theoretical inconsistency can be
formally treated in two ways:

1. Signals can be considered complex, possibly with the constraint of zero imag-
inary part. This will be the case in the Matlab implementation.

2. The coefficient space can be considered over real numbers (i.e., with R as
the scalars). In particular, in case of DFT or STFT, we may further assume
conjugate symmetry of the spectra (in the frequency direction).

In order to simplify the notation, signals will be considered real throughout the
thesis, and the DFT or STFT coefficients complex without further elaboration.

1.1.2 Operators

In finite-dimensional vector spaces, where vectors correspond to 𝑁 -tuples, any linear
operation (transformation) is identifiable with multiplication by a suitable matrix.
And vice versa: Any matrix T ∈ C𝑀×𝑁 defines a linear mapping C𝑁 → C𝑀 by
setting x ↦→ Tx for any x ∈ C𝑁 [24, Proposition 1.43]. More generally, a linear
operator is defined as follows:

Definition 1.13 (Linear, continuous operator [24, Definitions 1.30, 2.69]). Let 𝑉, 𝑊

be two vector spaces over F. Operator 𝑇 : 𝑉 → ℛ(𝑇 ) ⊆ 𝑊 , where ℛ(𝑇 ) denotes the

24



range space of 𝑇 , is called linear, or antilinear (conjugate linear), if for all 𝑢, 𝑣 ∈ 𝑉

and for all 𝛼 ∈ F, it holds

𝑇 (𝑢 + 𝑣) = 𝑇 (𝑢) + 𝑇 (𝑣) and 𝑇 (𝛼 · 𝑢) = 𝛼 · 𝑇 (𝑢), or 𝑇 (𝛼 · 𝑢) = 𝛼 · 𝑇 (𝑢). (1.12)

Operator 𝑇 is called continuous (or bounded), if there exists 𝐶 > 0 such that
‖𝑇𝑢‖ ≤ 𝐶‖𝑢‖ for all 𝑢 ∈ 𝑉 .4

It can be shown that the set of all bounded operators forms a vector space. In
this thesis, we will only make use of the notion of operator norm, which itself is a
norm (according to 1.2) on the space of operators.

Definition 1.14 (Operator norm [24, Definition 2.69, Lemma 2.70]). Let 𝑇 : 𝑉 →
𝑊 be a bounded linear operator between two normed spaces. We define the norm
of 𝑇 as

‖𝑇‖ = inf{𝐶 | 𝐶 > 0 : ‖𝑇𝑢‖ ≤ 𝐶‖𝑢‖ ∀𝑢 ∈ 𝑉 }. (1.13)

Equivalently, the norm can be defined as ‖𝑇‖ = sup‖𝑢‖=1 ‖𝑇𝑢‖, which can
be seen as a measure of how much the transformation 𝑇 deforms the unit ball
{𝑢 ∈ 𝑉 | ‖𝑢‖ = 1}. Since in finite-dimensional spaces, linear operators have one-
to-one correspondence to matrices (or, more precisely with multiplication of vectors
by a matrix, see [24, Proposition 1.43], we can use definition 1.14 also to compute
(operator) norms of matrices (besides e.g. the Frobenius norm mentioned in exam-
ple 1.3).

In many cases, we want to express a backwards operation to a given transforma-
tion 𝑇 : 𝑉 → 𝑊 , i.e., some transformation 𝑊 → 𝑉 related to 𝑇 . In the following
chapters, we will make use of three different possibilities – the adjoint, inverse and
pseudoinverse operator.

Definition 1.15 (Adjoint operator [24, Proposition 2.7]). Let 𝑇 : 𝑉 → 𝑊 be
a bounded linear operator between two inner product spaces. The linear opera-
tor 𝑇 * : 𝑊 → 𝑉 which for all 𝑢, 𝑣 ∈ 𝑉 satisfies

⟨𝑇𝑢, 𝑣⟩ = ⟨𝑢, 𝑇 *𝑣⟩ (1.14)

is called the operator adjoint to 𝑇 .

The inverse of a operator 𝑇 : 𝑉 → 𝑊 can be seen intuitively as such operator
𝑇 −1 : 𝑊 → 𝑉 , which, when composed with 𝑇 , forms the identity (on 𝑉 in the case

4Note that ‖𝑢‖ is a norm on the space 𝑉 , whereas ‖𝑇𝑢‖ is a norm on the space 𝑊 . It should
be clear from the context which norm is used, which is why it will usually not be distinguished by
notation.
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𝑇 −1𝑇 and on 𝑊 in the case of 𝑇𝑇 −1). In other notation, 𝑣 = 𝑇𝑢 is equivalent
to 𝑢 = 𝑇 −1𝑣. However, the inverse does not always exist. If this is the case, the
concept of pseudoinverse provides a convenient generalization.

Definition 1.16 (Pseudoinverse operator [28, Chapter 1.1]). Let 𝑇 : 𝑉 → 𝑊

be a bounded linear operator between two inner product spaces. The operator
𝑇 + : 𝑊 → 𝑉 is called the pseudoinverse (Moore–Penrose inverse) of the operator 𝑇

if it satisfies:
1. 𝑇𝑇 +𝑇 = 𝑇 ,
2. 𝑇 +𝑇𝑇 + = 𝑇 +,
3. (𝑇𝑇 +)* = 𝑇𝑇 +,
4. (𝑇 +𝑇 )* = 𝑇 +𝑇 .

Even though the formal definitions may be rather complicated, the situation
is much simpler in the case of matrix operators: Consider an operator defined by
a matrix T. Then, the adjoint operator corresponds to the Hermitian transpose
of the original matrix, i.e., T* (only transpose in the case of real spaces, i.e., T⊤).
Similarly the inverse operator is defined as multiplication with the inverse matrix
T−1. From this matrix case, one can also observe that the adjoint (and also pseu-
doinverse) always exist, but it is not the case of the inverse, which needs the matrix
T to be regular. If the columns of T are linearly independent, it can be shown
that the matrix T*T is regular, and we can express the pseudoinverse explicitly as
T+ = (T*T)−1T*.

The pseudoinverse is closely related to solutions of systems of linear equations in
the form Ax = b, where the right-hand side b ∈ C𝑀 and the matrix A ∈ C𝑀×𝑁 are
given and we search for x ∈ C𝑁 . If the matrix A is regular, the system has a unique
solution x = A−1b. If A is singular, the system either has infinitely many solutions
(if b lies in the range space of A, i.e., the set of linear combinations of the columns
of A), or no solution. Then, by putting x̂ = A+b we minimize the divergence from
the right-hand size:

‖Ax̂− b‖2 = min
x∈C𝑁

‖Ax− b‖2, (1.15)

while from all x satisfiying (1.15), x̂ has itself minimal norm [28, Corollary 3, p. 109].
Note that this covers also the case when the system has infinitely many solutions
and minx∈C𝑁 ‖Ax− b‖2 = 0.

Remark 1.17 (Projection onto the range space). Properties of the pseudoinverse
allow to express the projection onto the range space of a linear operator A (see also
definition 1.13 for a formal definition of the projection on a convex set) as

projℛ(A)(x) = AA+x = A(A*A)−1A*x. (1.16)
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The second equality holds if the columns of A are linearly independent, as discussed
above. In particular, if A is the analysis operator of a Parseval tight frame, it holds
A*A = I, which simplifies (1.16) to projℛ(A)(x) = AA*x.

1.2 Optimization
Assume hereinafter that 𝑉 is a vector space, equipped with a norm ‖ · ‖ and an
inner product ⟨·, ·⟩ if needed, and 𝑓 : 𝑉 → R ∪ {∞} is a function with domain
𝒟(𝑓) = {𝑢 ∈ 𝑉 | 𝑓(𝑢) <∞} ⊆ 𝑉 .

An optimization problem is usually posed in one of the following forms:

𝑚 = min
𝑥

𝑓(𝑥) subject to 𝑥 ∈ 𝐶 (1.17a)

�̂� ∈ arg min
𝑥∈𝐶

𝑓(𝑥), (1.17b)

where 𝑓(𝑥) is referred to as the objective function. In the case (1.17a) we search
for the minimum 𝑚 of the function 𝑓(𝑥) over the set 𝐶 ⊂ 𝑉 . The constraint 𝑥 ∈ 𝐶

might not be present, then we consider every 𝑥 ∈ 𝒟(𝑓). In the case (1.17b) we
search for such �̂� in which 𝑓(𝑥) attains its minimum over the set 𝐶. Using the
notation of (1.17b), it holds 𝑓(�̂�) = 𝑚. Since this minimum can be attained at
multiple points, the argument of the minima is generally a set. However, in most
applications, the particular choice of an element of this set is not crucial, which is
why we write simply �̂� = arg min𝑥∈𝐶 𝑓(𝑥).

Modern optimization-based signal processing applications usually rely on convex
optimization, i.e., searching for a minimum of a convex function over a convex set.
For the sake of completeness, we hereby recall definitions of these basic terms:

Definition 1.18 (Convex set [29, p. 2.1.4]). A set 𝐶 ⊆ 𝑉 is convex if for all 𝑢, 𝑣 ∈ 𝐶

and 0 ≤ 𝑡 ≤ 1, it holds 𝑡𝑢 + (1− 𝑡)𝑣 ∈ 𝐶.

Definition 1.19 (Convex function [29, p. 3.1.1]). A function 𝑓 : 𝑉 → R is convex
if its domain 𝒟(𝑓) is a convex set and if for all 𝑢, 𝑣 ∈ 𝒟(𝑓) and 0 ≤ 𝑡 ≤ 1 it holds

𝑓(𝑡𝑢 + (1− 𝑡)𝑣) ≤ 𝑡𝑓(𝑢) + (1− 𝑡)𝑓(𝑣). (1.18)

One of the key notions in convex optimization is also the (convex) conjugate of
a given function 𝑓 , sometimes also called the Fenchel–Legendre transform of 𝑓 .

Definition 1.20 (Convex conjugate function [29, p. 3.3.1]). A (convex) conjugate
of a function 𝑓 : 𝑉 → R is the function 𝑓 * : 𝑉 → R defined point-wise as

𝑓 *(𝑦) = sup
𝑥∈𝒟(𝑓)

(⟨𝑥, 𝑦⟩ − 𝑓(𝑥)) . (1.19)
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It can be shown that point-wise supremum of convex functions is a convex
function. Since for arbitrary fixed 𝑥 ∈ 𝑉 the function 𝑓𝑥(𝑦) = ⟨𝑥, 𝑦⟩ − 𝑓(𝑥)
is affine and thus convex (because 𝑓(𝑥) is just a number for fixed 𝑥), then also
𝑓 *(𝑦) = sup𝑥∈𝒟(𝑓) 𝑓𝑥(𝑦) is convex, which justifies the term convex conjugate. Let us
emphasize here that the convexity of 𝑓 * is independent on the (non)convexity of 𝑓 .

Remark 1.21. Due to the presence of the supremum function, the expression (1.19)
is well defined only for a real space 𝑉 . In the complex case, we may define a real
inner product for 𝑢, 𝑣 ∈ 𝑉 as the real part of a given complex inner product on
𝑉 , i.e., ℜ(⟨𝑢, 𝑣⟩). However, it will be a true inner product by definition 1.4 only
if we limit ourselves to real scalars due to the homogeneity property. Alternative
definitions of conjugate function for complex spaces exist [30]; such a generality is
nonetheless out of scope of this thesis.

In signal processing, the so-called regularized inverse problems are of special
importance. This refers to a situation where we observe a signal that has been
degraded or transformed in some way and from this observation we want to estimate
its original form. A special case is the observation given by a linear operator, which
can be put in the context of systems of linear equations. For a given matrix A,
observed signal b and the unknown original x, the following scheme applies:

Ax = b

⎧⎪⎪⎪⎨⎪⎪⎪⎩
linear observation model of x

system of linear equations

⎧⎪⎪⎨⎪⎪⎩
∃A−1 unique solution

@A−1

⎧⎪⎨⎪⎩∞ solutions, one must be chosen

no solution

⎫⎪⎬⎪⎭

⎫⎪⎪⎬⎪⎪⎭

⎫⎪⎪⎪⎬⎪⎪⎪⎭

By the end of the section 1.1.2 we have mentioned the pseudoinverse operator as
a practical approach to systems of linear equations with no unique solution, see
equation (1.15) and the comments thereby.

However, the pseudoinverse always chooses the “smallest” solution, which may
not be the most suitable one in practice. That is why we bring forward the concept
of regularization, i.e., a function 𝑅(x), which allows to mathematically distinguish
between “good” and “bad” solutions, usually such that 𝑅(x) attains small values for
favorable choices of x. A possible regularization option, related to the pseudoinverse,
is the norm 𝑅(x) = ‖x‖. If we similarly generalize the measure of divergence from
the (not necessarily linear) observation, we arrive at the following generic regularized
inverse problem:

x̂ = arg min
x

𝐸(x, b) + 𝑅(x). (1.20)

The term 𝐸(x, b) ensures that the solution x̂ is in line with the observation b. In the
case of linear observation model, the function 𝐸 can ensure satisfying the equality
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Ax̂ = b, if we can guarantee existence of at least one such solution. Otherwise,
we can require the solution to be “close” to the right-hand side, e.g. by setting
𝐸(x, b) = ‖Ax̂− b‖2.

1.2.1 Proximal operators

In this section, we introduce the concept of a proximal operator (corresponding
to a given function), which turns out to be very practical for minimizing non-
differentiable functions. Already in his original work, Jean-Jacques Moreau intro-
duced the proximal operator as a generalization of the projection onto a closed
subset or a subspace of a vector space [31] (see also the table 1.1 with selected ex-
amples). There are also connections between the proximal operator and the gradient
of a differentiable function, see e.g. [32, Thm. 6.39], but these are less intuitive.

In the following, we will not discuss in detail all properties of functions needed
for the definitions to be reasonable. We only denote ℱ(𝑉 ) the set of convex lower
semicontinuous5 functions on 𝑉 with non-empty domain (from optimization point of
view, functions that are not identically equal∞). The symbol 𝑉 denotes a real finite-
dimensional inner product space, which can be without loss of generality identified
with the space R𝑁 of a desired dimension 𝑁 , since the only difference is a partic-
ular choice of basis. Similarly, a linear operator 𝐴 as a mapping from a space of
dimension 𝑁 to a space of dimension 𝑀 can be identified with a matrix A ∈ R𝑀×𝑁,
as previously mentioned in section 1.1.2. Let us remark that in some cases, the
operators and algorithms from this and the subsequent section 1.2.2 are defined also
in more general spaces, see e.g. [33, 34]. However, the applications considered in
this thesis will only demand finite dimension.

Definition 1.22 (Proximal operator [32, Definition 6.1]). Given a function 𝑓 ∈
ℱ(𝑉 ), the proximal mapping of 𝑓 is the operator prox𝑓 : 𝑉 → 𝑉 given by

prox𝑓 (𝑢) = arg min
𝑣∈𝑉

𝑓(𝑣) + 1
2‖𝑣 − 𝑢‖2 ∀𝑢 ∈ 𝑉. (1.21)

Even though for a generic function 𝑓 the minimization in (1.21) can have multiple
solutions, the condition 𝑓 ∈ ℱ(𝑉 ) ensures that the solution is unique and thus the
proximal operator is well defined [32, thm. 6.3]. Particular examples of proximal
operators relevant to this thesis are given in table 1.1.

Recall that the conjugate function was defined in definition 1.20, and the indi-

5see e.g. [32, Definition 2.5]
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Tab. 1.1: Proximal operator of selected functions. In all cases it holds 𝑓 ∈ ℱ(R𝑁),
while assuming 𝑔 ∈ ℱ(R𝑀), A ∈ R𝑀×𝑁, y ∈ R𝑀 and 𝛾 > 0.

function 𝑓(x) prox𝑓 (x) reference

indicator 𝐼𝐶(x), 𝐶 ̸= ∅ closed proj𝐶(x) [32, thm. 6.24]

quadratic 𝛾
2‖Ax− y‖2

2 (I + 𝛾A⊤A)−1(x + 𝛾A⊤y) [35, tab. I]

ℓ1 norm 𝛾‖x‖1 soft𝛾(x) [32, ex. 6.8]

linear 𝑔(Ax), AA⊤ = 𝛾I x + 𝛾−1A⊤
(︁
prox𝛾𝑔(Ax)−Ax

)︁
[32, thm. 6.15]

composition 𝑔(Ax), A⊤A = 𝛾I 𝛾−1A⊤ prox𝛾𝑔+𝐼ℛ(A)
(Ax) [1, lem. 2]

conjugate 𝛾𝑓 *(x) x− 𝛾 prox𝛾−1𝑓 (𝛾−1x) [32, thm. 6.45]

cator function of a set 𝐶 ⊆ 𝑉 is defined as

𝐼𝐶(𝑢) =

⎧⎪⎨⎪⎩0 if 𝑢 ∈ 𝐶,

∞ if 𝑢 /∈ 𝐶.
(1.22)

The proximal operator is thus indeed a generalization of the projection operator,
since

proj𝐶(𝑢) = arg min
𝑣∈𝐶

1
2‖𝑣 − 𝑢‖2 = arg min

𝑣∈𝑉
𝐼𝐶(𝑣) + 1

2‖𝑣 − 𝑢‖2 = prox𝐼𝐶
(𝑢). (1.23)

For a space 𝑉 = R the soft thresholding as a proximal operator of the absolute
value has the following form [32, lemma 6.5]:

prox𝛾|·|(𝑥) = soft𝛾(𝑥) = sgn(𝑥) max(|𝑥| − 𝛾, 0). (1.24)

For the space 𝑉 = R𝑁, the soft thresholding operates entrywise and it is not distin-
guished in notation from the scalar version:

soft𝛾(x) = [soft𝛾(𝑥1), . . . , soft𝛾(𝑥𝑁)]⊤. (1.25)

1.2.2 Algorithms

In this section, we present several algorithms for solving optimization problems of
a specific form, where we minimize the sum of several “simple” functions. In the case
where these functions have a known proximal operator, we are able to minimize such
a sum alternately with respect to the individual functions using the corresponding
proximal operators and appropriate extrapolation steps.
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Douglas–Rachford algorithm

Assume a generic optimization problem in the form

x̂ = arg min
x∈R𝑁

𝑓(x) + 𝑔(x), (1.26)

where 𝑓, 𝑔 ∈ ℱ(R𝑁), ri(𝒟(𝑓)) ∩ ri(𝒟(𝑔)) ̸= ∅ a 𝑓(x) + 𝑔(x)→∞ if ‖x‖ → ∞. The
Douglas–Rachford algorithm (DRA) 1.1 generates the sequence x(𝑛) which converges
to the solution of the problem (1.26) [33, corollary 21], [35, proposition 9].

Algorithm 1.1: Douglas–Rachford algorithm [35, p. IV.]
input: 𝜀 ∈ [0, 1], 𝛾 > 0, y(0) ∈ R𝑁

1 for 𝑛 = 1, 2, . . . do
2 x(𝑛) = prox𝛾𝑔(y(𝑛−1))
3 choose 𝜆(𝑛) ∈ [𝜀, 2− 𝜀]
4 y(𝑛) = y(𝑛−1) + 𝜆(𝑛)

(︁
prox𝛾𝑓 (2x(𝑛) − y(𝑛−1))− x(𝑛)

)︁
5 end

output: x̂ = x(𝑛)

Chambolle–Pock algorithm

In numerous applications, we need to optimize problems where a function is com-
posed with a linear operator. In some cases we know the proximal operator of such
a composition (see table 1.1). For arbitrary linear operator, the problem of the form

x̂ = arg min
x∈R𝑁

𝑓(Ax) + 𝑔(x) (1.27)

can be solved using Chambolle–Pock algorithm (CPA), also known as primal–dual
algorithm. A generic form is in algorithm 1.2.

Algorithm 1.2: Chambolle–Pock algorithm [36]
input: 𝜏 , 𝜎 > 0, 𝜃 ∈ [0, 1], x(0) ∈ R𝑁, y(0) ∈ R𝑀, x̄(0) = x(0)

1 for 𝑛 = 1, 2, . . . do
2 y(𝑛) = prox𝜎𝑓*(y(𝑛−1) + 𝜎Ax̄(𝑛−1))
3 x(𝑛) = prox𝜏𝑔(x(𝑛−1) − 𝜏A*y(𝑛))
4 x̄(𝑛) = x(𝑛) + 𝜃(x(𝑛) − x(𝑛−1))
5 end

output: x̂ = x(𝑛)

31



Assume that 𝑔 ∈ ℱ(R𝑁), 𝑓, 𝑓 * ∈ ℱ(R𝑀), while 𝑓 * is the conjugate of 𝑓 (see
definition 1.20), and A ∈ R𝑀×𝑁 represents a linear operator R𝑁 → R𝑀. If 6 𝜃 = 1
and 𝜏𝜎‖A‖2 ≤ 1 (see definition 1.14), then the sequence x(𝑛) generated by the
algorithm 1.2 converges to the solution of the problem (1.27) [36].

ADMM

Problem (1.27) can be treated alternatively, if we introduce a new variable z, tied
by the constraint z = Ax, and solve for both x and z. The equivalent reformulation
of (1.27) is

(x̂, ẑ) = arg min
x∈R𝑁, z∈R𝑀

𝑓(z) + 𝑔(x) subject to Ax− z = 0. (1.28)

Problem in the form of (1.28) can be solved using a variant of the Lagrange multi-
plier method known as Alternating Direction Method of Multipliers (ADMM). The
method is derived using the augmented Lagrangian [38, p. 2.3]

𝐿𝜌(x, z, y) = 𝑓(z) + 𝑔(x) + y⊤(Ax− z) + 𝜌

2‖Ax− z‖2 (1.29)

with multipliers y ∈ R𝑀, or equivalently with u = y/𝜌 in the (scaled) form

𝐿𝜌(x, z, u) = 𝑓(z) + 𝑔(x) + 𝜌

2‖Ax− z + u‖2 − 𝜌

2‖u‖
2. (1.30)

ADMM then consists of the minimization of 𝐿𝜌 with respect to x and z and of a
suitable update of the multipliers u. This is summarized by the algorithm 1.3.

Algorithm 1.3: ADMM [38, p. 3.1.1]
input: z(0) ∈ R𝑀, u(0) ∈ R𝑀, 𝜌 > 0

1 for 𝑛 = 1, 2, . . . do
2 x(𝑛) = arg minx∈R𝑁 𝑔(x) + 𝜌

2‖Ax− z(𝑛−1) + u(𝑛−1)‖2

3 z(𝑛) = arg minz∈R𝑀 𝑓(z) + 𝜌
2‖Ax(𝑛) − z + u(𝑛−1)‖2

4 u(𝑛) = u(𝑛−1) + Ax(𝑛) − z(𝑛)

5 end
output: x̂ = x(𝑛), ẑ = z(𝑛)

Denote (x*, z*) the solution of the problem (1.28) and 𝑝* = 𝑓(z*) + 𝑔(x*) the
optimal value of the objective function. Then, under rather mild conditions7, one
can show the convergence of the residuals r(𝑛) = Ax(𝑛) − z(𝑛) → 0, the objective

6Even though the original paper proves convergence for 𝜏𝜎‖A‖2 < 1, the finite-dimensional
case allows also equality in this constraint [37, theorem 3.3].

7Remarkably when 𝑓 ∈ ℱ(R𝑀 ) and 𝑔 ∈ ℱ(R𝑁 ) and when the (unaugmented) Lagrangian 𝐿0
has a saddle point.
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function 𝑓(z(𝑛)) + 𝑔(x(𝑛)) → 𝑝*, and the dual variable z(𝑛) → z* [38, p. 3.2.1]. For
the convergence of the primal variable x(𝑛) → x*, additional conditions need to be
satisfied. An example of a sufficient condition is that A⊤A is a regular matrix and
ri(𝒟(𝑓)) ∩A ri(𝒟(𝑔)) ̸= ∅ [35, p. VI.D].

Remark 1.23 (Proximal form of ADMM). Step 2 can be reformulated using the
proximal operator as x(𝑛) = prox𝑔/𝜌(A⊤(z(𝑛−1) − u(𝑛−1))), if A⊤A = I, in analogy
with [2, remark 3]. Directly from definition 1.22, step 3 has a proximal form z(𝑛) =
prox𝑓/𝜌(Ax(𝑛) + u(𝑛−1)).

Remark 1.24 (Complex form of ADMM). ADMM can be used also if 𝑓 and 𝑔 in
equation (1.28) are real functions of complex variables. Formally, however, in such
a case the augmented Lagrangian must be reformulated so that it remains a real
function. Instead of equation (1.29) we use a novel definition

𝐿𝜌(x, z, y) = 𝑓(z) + 𝑔(x) + y⊤

⎡⎣ℜ(Ax− z)
ℑ(Ax− z)

⎤⎦ + 𝜌

2

⃦⃦⃦⃦
⃦⃦
⎡⎣ℜ(Ax− z)
ℑ(Ax− z)

⎤⎦⃦⃦⃦⃦
⃦⃦

2

2

, (1.31)

where for x ∈ C𝑁, z ∈ C𝑀 and A ∈ C𝑀×𝑁 the dual variable is y ∈ R2𝑀. For
this formulation, we have the same augmented Lagrangian (1.30), only with the
difference that u ∈ R2𝑀. In practice, this modification is not necessary and we can
work with complex vectors, because for any complex vector c, it is easy to show
that

‖c‖2
2 =

⃦⃦⃦⃦
⃦⃦
⎡⎣ℜ(c)
ℑ(c)

⎤⎦⃦⃦⃦⃦
⃦⃦

2

2

. (1.32)

The subproblems on lines 2 and 3 in algorithm 1.3 can remain the same also for
complex variables and step 4 consists in summation of complex vectors, which is
equivalent to summing the real and imaginary parts separately.

Remark 1.25. For solving problems of type (1.27), which may also contain further
summands and different linear operators, there exist more complex algorithms. An
example is the proximal algorithm introduced independently by Condat and Vũ
[39, 40]. In other cases, it is possible to convert complex problems by appropriate
combination functions to a problem solvable by one of the algorithms mentioned
above, see e.g. [3]. It can also be advantageous to use the properties of proximal
operators for separable functions [41, 42, 43].

Non-negative matrix factorization

A different, but for this thesis relevant problem, is NMF. The goal is to factorize
a non-negative matrix V ∈ R𝑀×𝑁 as a multiplication of two non-negative matrices
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W ∈ R𝑀×𝐾 and H ∈ R𝐾×𝑁. If we allow some deviation of V from the product
WH, then NMF solves the problem

(Ŵ, Ĥ) = arg min
W∈R𝑀×𝐾

H∈R𝐾×𝑁

𝐷(V |WH) subject to 𝑤𝑚𝑘 ≥ 0, ℎ𝑘𝑛 ≥ 0 ∀𝑚, 𝑛, 𝑘, (1.33)

where 𝐷(A | B) measures the divergence between two matrices A and B. An
example of such a measure is the square of the Euclidean distance ‖A − B‖2

F =∑︀
𝑖,𝑗 |𝑎𝑖𝑗 − 𝑏𝑖𝑗|2 or the so-called Itakura–Saito divergence

𝐷IS(A | B) =
∑︁
𝑖,𝑗

𝑑IS(𝑎𝑖𝑗 | 𝑏𝑖𝑗) =
∑︁
𝑖,𝑗

(︁𝑎𝑖𝑗

𝑏𝑖𝑗

− log 𝑎𝑖𝑗

𝑏𝑖𝑗

− 1
)︁
, (1.34)

both being special cases of 𝛽-divergence [44, p. 2.1]. The problem (1.33) is not convex
(only for fixed W or fixed H), but algorithms exist which allow to find at least a local
optimum [45, 44]. For the case featuring Itakura–Saito divergence a possible solver
is in algorithm 1.4, where ⊙ denotes entrywise operations (multiplication, power)
and also the fraction is understood as entry-wise operation (A

B = A⊙B⊙[−1]).

Algorithm 1.4: NMF [44, Alg. 1]
input: non-negative matrices W(0) ∈ R𝑀×𝐾 and H(0) ∈ R𝐾×𝑁

1 for 𝑛 = 1, 2, . . . do

2 W(𝑛) = W(𝑛−1) ⊙

(︁
(W(𝑛−1)H(𝑛−1))⊙[−2] ⊙V

)︁
(H(𝑛−1))⊤

(W(𝑛−1)H(𝑛−1))⊙[−1](H(𝑛−1))⊤

3 H(𝑛) = H(𝑛−1) ⊙
(W(𝑛))⊤

(︁
(W(𝑛)H(𝑛−1))⊙[−2] ⊙V

)︁
(W(𝑛))⊤(W(𝑛)H(𝑛−1))⊙[−1]

4 end
output: Ŵ = W(𝑛), Ĥ = H(𝑛)

For higher numerical stability, it is possible to normalize the columns of the
matrix W(𝑛) after each iteration and multiply the rows of the matrix H(𝑛) propor-
tionally, such that the product is preserved.

Remark 1.26. The multiplicative updates of algorithm 1.4 may be problematic
due to possible division by zero. To overcome this issue, a relaxed problem can be
solved instead of (1.33):

(Ŵ, Ĥ) = arg min
W∈R𝑀×𝐾

H∈R𝐾×𝑁

𝐷(V |WH + 𝜀) subject to 𝑤𝑚𝑘 ≥ 0, ℎ𝑘𝑛 ≥ 0 ∀𝑚, 𝑛, 𝑘, (1.35)

where 𝜀 > 0 is a small relaxation parameter. This leads to the relaxed updates
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(iteration counter is omitted for brevity)

W←W⊙

(︁
(WH + 𝜀)⊙[−2] ⊙V

)︁
H⊤

(WH + 𝜀)⊙[−1]H⊤ , (1.36a)

H← H⊙
W⊤

(︁
(WH + 𝜀)⊙[−2] ⊙V

)︁
W⊤(WH + 𝜀)⊙[−1] , (1.36b)

as can be derived from equations (8)–(12) in [44].
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2 State of the art
For easier orientation in the described methods, we first introduce the interpolation
problem in section 2.1 using the formal concepts introduced in the previous chapter.
We then discuss the main classes of methods from current literature which achieve
state-of-the-art results in audio signal reconstruction. These are mainly the meth-
ods based on autoregressive modeling (section 2.2), sparsity of the time-frequency
representation (section 2.3), self-similarity (section 2.4), and methods based on deep
learning (section 2.5).

2.1 Generic task of interpolating missing segments in
an audio signal

Consider an unknown undamaged signal xtrue ∈ R𝐿. Assume that there is a sample
dropout in this signal, where some samples are considered known (reliable) and
the remaining samples are to be estimated. We formalize this split using the set
of indices of known samples 𝑀 and its complement 𝑀 = {1, . . . , 𝐿} ∖ 𝑀 . The
sample dropout can be formalized as a restriction via the operator 𝐷 : R𝐿 → R|𝑀 |,
𝐷(xtrue) = xtrue(𝑀). Recall that, in accordance with remark 1.11, the restriction
respects the underlying temporal localization of the reliable samples.

Denote xobs = 𝐷(y) = xtrue(𝑀) ∈ R|𝑀 | the observed signal and let us define the
set of feasible interpolated signals as1

𝛤 = 𝐷−1(xobs) = {x ∈ R𝐿 | x(𝑀) = xobs}. (2.1)

The most generic interpolation problem can be posed as the task of finding a suitable
x̂ ∈ 𝛤 . Although we will encounter various approaches to determine the suitability
of the solution in the following, we will most often proceed by formulating a suitable
regularized inverse problem of the form given by equation (1.20). It suffices to
define 𝐸(x, xobs) = 𝐼𝛤 (x), where 𝐼𝛤 is the indicator function of the set 𝛤 according
to (1.22), which results in the problem

x̂ = arg min
x

𝐼𝛤 (x) + 𝑅(x). (2.2)

Remark 2.1 (Of indices and matrices). For the derivation of some of the methods,
it will be convenient to rewrite the condition for the membership of the signal x
in the set 𝛤 as a set of linear constraints. Specifically, for the selection of x(𝑀),

1Equation (2.1) uses the notion of preimage of the element xobs under the operator 𝐷, i.e., the
set of all x such that 𝐷(x) = xobs.
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we define a matrix M, which is constructed from the identity matrix of order 𝐿 by
selecting the rows given by the indices in 𝑀 , i.e., M ∈ R|𝑀 |×𝐿. Similarly, using the
complement 𝑀 , we define the matrix M ∈ R(𝐿−|𝑀 |)×𝐿. With this notation, we can
define the constraint

x ∈ 𝛤 ⇐⇒ Mx = xobs = Mxtrue. (2.3)

A second equivalent form of the condition for x can be obtained by imputing
zeros at the missing sample indices in both xtrue and the considered signal, which
can be expressed as

x ∈ 𝛤 ⇐⇒ M⊤Mx = M⊤xobs = M⊤Mxtrue. (2.4)

This variant may sometimes be more practical, as the manipulation of uncorrupted
samples does not require knowledge of their count because the signal is not truncated
by the multiplication with M⊤M.

Remark 2.2. For the matrices defined in remark 2.1, it always holds M⊤M +
M⊤M = I, i.e., the identity matrix (of size 𝐿 = 5 in the previous example). This is
clear because both M⊤M and M⊤M are diagonal matrices such that

(︁
M⊤M

)︁
(𝑖, 𝑖) =

⎧⎪⎨⎪⎩1 𝑖 ∈𝑀,

0 otherwise,

(︁
M⊤M

)︁
(𝑖, 𝑖) =

⎧⎪⎨⎪⎩0 𝑖 ∈𝑀,

1 otherwise.
(2.5)

In other words, it holds
[︁
M⊤ M⊤

]︁ ⎡⎣M
M

⎤⎦ = I, i.e., the matrix
⎡⎣M
M

⎤⎦ is unitary (its

transpose coincides with its inverse).

Remark 2.3 (Considering noise). In the formulations above, we have assumed that
the observations are not contaminated by noise, so the samples that are not lost
are truly reliable and we want to preserve them in the reconstruction. We call
such a problem formulation (and its solution) consistent. In practice, it may be
reasonable to consider noise, although then the problem is not a true interpolation
in the mathematical sense. As a result, even signals that are sufficiently close to
the set 𝛤 in a suitable metric are feasible (we refer to this case as the inconsistent
formulation).

Note that inconsistent formulation may be reasonable even in the noiseless case.
For example, a signal can be assumed to only approximately follow a designed model.
As a consequence, regularization can be applied while not forcing entrywise equality
with observations.
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2.2 Methods based on autoregressive modeling
Autoregressive (AR) processes have long been a popular way to model audio signals.
These are a type of stochastic processes where the signal (process) x is governed by
the equation

𝑥𝑛 = −
𝑝∑︁

𝑖=1
𝑎𝑖𝑥𝑛−𝑖 + 𝑒𝑛, (2.6)

where e is the vector of AR model errors with respect to the signal x and 𝑝 is
the model order. Thus, the equation (2.6) prescribes the element 𝑥𝑛 as a linear
combination of the 𝑝 previous elements, except for the error term 𝑒𝑛, which ideally
corresponds to white noise. Alternatively, we can say that the signal x corresponds
to the output of an IIR filter with coefficients a, whose input is the noise signal e.
This model is used, for example, by speech codecs such as CELP (code-excited linear
prediction), where speech is modeled as noise or a sequence of pulses passing through
an AR filter [46, chapter 4]. However, the model is also suitable for modeling musical
signals, as shown in figure 2.1, which shows a signal – a short section of a string
quartet recording – and its deviation from the AR model of order 𝑝 = 32.
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(a) the signal x and the errors e, as defined in (2.6)

−0.02−0.01 0 0.01 0.020

10

20

30

40

50

60

70

AR model error

no
rm

al
iz

ed
fre

qu
en

cy

(b) histogram of the samples of
the error vector e

Fig. 2.1: Illustration of the AR nature of audio signals. In addition, the histogram
shows the probability density of the fitted normal distribution (when ignoring 1 %
most outlying values). For a true AR process, the error terms should exactly follow
the normal distribution. For the analysis to be comprehensive, we would still have
to show that the individual components of the vector e are uncorrelated. In this
illustrative example, it would turn out that the order of the model 𝑝 must be very
high (of the order of 1000) for the considered signal to actually correspond to the
realization of an AR process.
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In the context of audio reconstruction, one of the state-of-the-art methods using
the AR model is Janssen’s algorithm, presented in 1986 [47]. It is a solution to the
problem

(x̂, â) = arg min
x∈R𝐿, a∈R𝑝

𝑄(x, a) + 𝐼𝛤 (x), (2.7)

where 𝑄(x, a) = ‖e‖2 = ∑︀𝐿
𝑛=𝑝+1 |𝑥𝑛 + ∑︀𝑝

𝑖=1 𝑎𝑖𝑥𝑛−𝑖| is the norm of the error term2

from equation (2.6) (for given a and x), or a measure of how well the signal matches
its autoregressive approximation. This is a non-convex problem, but in practice,
it can be solved in a satisfiable way by alternating optimization with respect to
the vector of a coefficients and with respect to the signal x. Despite its age and
conceptual simplicity, it is still the leading method in the field of filling in missing
sections of audio signals [4].

An alternative approach based on AR modeling is the approach of Etter [49].
The problem of interpolating a missing audio segment is split into two extrapola-
tion problems, forward and backward, and the extrapolation is performed according
to the AR model of the signal in the left and right neighborhood of the missing
segment, respectively. The advantage is the straightforwardness of the method and
a lower computational complexity compared to Janssen’s iterative algorithm; the
disadvantage is the need for an intact neighborhood on both sides of the segment to
be completed. Similar methods were also presented by Kauppinen [50, 51] or Esquef
[52]. The algorithm is also implemented in Matlab as the function fillgaps.

In addition, variations on the original task based on AR modeling appear in
the literature, such as requiring sparsity of the AR coefficients [53, 54, 55]. This
theoretical concept has been applied to filling the missing segments in speech signals
[56, 57]. Methods for related signal restoration tasks, such as declipping, can be
based on a similar principle, where we impose conditions on the reconstructed signal
instead of the AR model.

2.3 Methods based on spectral sparsity

A wide range of methods is based on the assumption of spectral sparsity of speech
and music signals. Although the signal itself may not contain many zero values (i.e.,
it is not sparse by itself), with a suitable transformation we can obtain a representa-
tion that is significantly sparser. In audio signal processing, such a transformation
is, for example, STFT (see 1.9) or discrete cosine transform (DCT), see figure 2.2.

2This defines the so-called forward prediction error. Alternatively, the Burg’s method
[48, Sec. 5.1.2] estimates the AR coefficients are estimated such that forward and backward predic-
tion errors are minimized simultaneously.
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Fig. 2.2: Illustration of sparsity, which is not a property of the signal itself (a), but
of its time-frequency representation (b). Sparsity in the sense of a high number of
non-significant entries is emphasized by the figure (c), where the coefficients from
the spectrogram are ordered by absolute value, showing a steep decrease.

The sparsity assumption can then be used to pose interpolation as a regularized
problem.

This idea appears for the first time, together with the term audio inpainting in
the work od Adler et al. [20], who attempt to solve the following optimization task:

ĉ = arg min
c∈C𝐹 𝑁

‖c‖0 subject to ‖xobs −MTc‖2
2 ≤ 𝜀, (2.8)

where c are the coefficients of the signal in a suitable transform (DCT or STFT)
and T synthesizes the signal from these coefficients; the solution is then the signal
x̂ = Tĉ. The parameter 𝜀 > 0 regulates the tolerated deviation of the solution from
the observed samples, which is different from (2.2), where the indicator function
enforces this deviation to be zero (in the context of the note 2.3, this is therefore
an inconsistent formulation). Also note that for surjective T (which is the case of
frames), problem (2.8) is solvable even with 𝜀 = 0. However, allowing a non-zero
tolerance naturally leads to sparser solutions.

The task (2.8) is problematic due to the presence of sparsity as a non-convex
function. Even though promising strategies based on mixed-integer programming
exist for such tasks [58, 59], the audio processing application is further complicated
by the problem scale. The solution must therefore be sought heuristically, with
no guarantee of convergence to the global optimum. The authors of [20] choose
the Orthogonal Matching Pursuit (OMP) [60] and show that their approach can
compete with Janssen’s algorithm for holes of length of up to a few milliseconds.
The advantage of the OMP algorithm is its simple concept, its disadvantage is the
computational complexity.
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Because the sparsity assumption may be too simplistic, more complex models
can be found in the literature. One of them is structured sparsity, where we do
not directly minimize the number of non-zero coefficients in the spectrogram, but
define certain groups of coefficients and require a low number of these groups [61].
From the spectrogram in figure 2.2b we can presume that suitable groups are, for
example, a horizontal or vertical series of several neighboring coefficients (in the
time-frequency plane) – the former representing the harmonic components of the
tones, the latter the transient components. It turns out that in the case of audio
signal interpolation, such an approach can provide a significant improvement in the
reconstruction quality [62], similarly to the problem of audio declipping [63].

In addition, these works consider the so-called convex relaxation, where the non-
convex sparsity is replaced by the norm ‖ · ‖1, which sums the absolute values of the
argument entries (see also 1.3), and propose the following two formulations:

ĉ = arg min
c∈C𝐹 𝑁

‖c‖1 + 𝐼𝛤 (Tc), (2.9a)

x̂ = arg min
x∈R𝐿

‖Lx‖1 + 𝐼𝛤 (x). (2.9b)

The problems (2.9) are already convex, thus they are efficiently solvable using prox-
imal algorithms [35].

Remark 2.4 (Synthesis and analysis formulation). In the literature concerning
audio signal reconstruction, the synthesis and analysis kinds of optimization formu-
lations are sometimes distinguished. Examples of a synthesis formulation are (2.9a)
and (2.8). The variables of such a problem are the (sparse) signal coefficients from
which the signal is synthesized using the operator T. On the other hand, the anal-
ysis formulation (2.9b) has as variable directly the sought signal and the sparsity is
assumed after analyzing this signal with the operator L. If the transformations T
and L were invertible, then the two formulations would be equivalent. In the case of
redundant frame representation (where the number of coefficients 𝐹𝑁 exceeds the
length of the signal 𝐿), this is generally not the case [64].

Regularization using non-local sparsity [65] has also appeared in the literature.
This is a variant of structured sparsity, but the sparse groups of coefficients are
not necessarily concentrated in time, instead they can be spread over the whole
time range of the signal. For example, this allows to utilize the repetitive nature of
musical signals.

For finding sparse solutions in various domains, we also use a procedure which
is referred to as dictionary learning, where in addition to the sought variable (signal
or coefficients) we also look for the transformation such that the solution can be
truly sparse, see e.g. [66, 67]. For signal interpolation, generic dictionary-learning
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approaches may not be appropriate, as we often require some additional properties
of the transformation we are looking for, e.g., that it is a (tight) frame. A wider
area of application has been described in the field of declipping of audio signals
[68, 69, 70]. In combination with the OMP, dictionary learning has been used to
interpolate short gaps (up to length of 15 ms) [71]. Recent literature considers also
longer missing segments [72, 73], when more advanced algorithms developed in this
thesis are supplemented by the learning phase (see chapter 4).

2.4 Methods based on self-similarity

A separate class consists of methods based on self-similarity. These methods do
not work with regularized formulations of type (2.2), nor do they try to extrapolate
missing sections from the intact context. Rather, the goal is to disguise the missing
segment by filling in the signal with a section from the intact part of the signal such
that the filled-in segment is imperceptible in the resulting signal. An example is the
self-content-based audio inpainting method, which works by splitting the signal into
blocks of a given length and searching for a similar block in place of the corrupted
[74]. A second example is the method based on a similarity graph, which focuses on
the smoothness of the transition from the uncorrupted context to the section added
at the missing location [75].

2.5 Methods based on deep learning

The last class of methods widely represented in recent literature is based on machine
learning, specifically on deep neural networks. In a broader sense, these methods can
be put in the context of the regularized task (2.2), where, however, the regularization
𝑅(x) is not hand-crafted – as in case of the (structured) sparsity or autoregressive
modeling – but is learned using a sufficient number of training signals.

Although neural networks are now dominant in many domains and generative
models are gaining much attention, generating (musical) audio signals is rather
marginal [76, 77, 78]. While more applications deal with speech processing (including
interpolation of missing segments caused by packet loss during transmission [79]),
music signal processing is more complicated due to its multi-scale nature [80].

Currently, most advanced deep learning algorithms for audio signal interpolation
are based on the so-called context encoders, which are networks that learn a mini-
malist (low-dimensional) representation of complex inputs (here spectrograms) [81].
In the case of interpolation, the network learns a representation of the uncorrupted
context and, in the decoding part, produces a longer signal from this representation
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that contains also the concealed segment. A newer variant then additionally includes
the so-called adversarial loss, where the learning process involves a second network
(discriminator) in addition to the generator. The discriminator learns alongside the
generator to distinguish real and artificially generated signals, which further forces
the generator to produce more realistic signals during the learning process [82]. The
most recent developments focus on so-called diffusion models [83, 84].

A drawback of methods that rely only on deep neural networks is the problem-
atic interpretability and controllability of the results. A compromise between these
methods and classical methods is either the so-called deep unfolding [85], or plug-
and-play methods [86]. These methods find applications mainly in image processing,
and recently there have also emerged applications to audio signal reconstruction [87,
88], but studies dealing with the interpolation of (especially longer) sections of audio
signals using these methods are still lacking.
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3 Thesis aims and objectives
The overall goal of the thesis is the development of new algorithms for interpolation
of missing or corrupted sections of musical audio signals, aiming at increasing the
quality of the restored audio signals. The ambition is to challenge the state-of-the-
art methods especially in the context of middle-length gaps, i.e., drop-outs of length
of tens of milliseconds. To achieve the main goal, the aims of the thesis can be
structured in the following, consecutive objectives.

Formalization of the interpolation task

In order to propose algorithms for audio interpolation, the problem needs to be
formalized. Most of the state-of-the-art methods are based on mathematical opti-
mization, more precisely inverse problems. Such problems consist in minimization of
the sum of the data-fidelity and regularization terms. The first aim of the thesis is to
formulate the problem in a way suitable for the employment of modern optimization
methods.

Design of the priors on the audio signal and suitable algorithms

To benefit from algorithms used to solve inverse problems, a convenient prior must
be designed. This thesis aims to focus on two particular possibilities – sparsity and
low-rank structure of the spectrogram of the original audio signal.

Sparsity has been among the most popular priors in past decades, both from
the synthesis and analysis perspectives. Since modern optimization algorithms are
commonly built upon proximal splitting, a part of the work will focus on convex
relaxations of the sparsity objective. Regarding the low-rank prior, one of the state-
of-the-art methods in audio declipping is based on a probabilistic formulation using
non-negative matrix factorization (NMF). The aim of part of the thesis is to study
profoundly this approach and design its variant for audio interpolation.

The design of the priors must be followed by the proposition of suitable algo-
rithms for solving the resulting optimization problems. In the context of convex
optimization, we may rely on proximal splitting methods. For probabilistic model-
ing, maximum likelihood estimation (MLE) is a commonly used strategy, realized
through the expectation–maximization (EM) algorithm.

Proposals for modification of the state-of-the-art models and methods

The aim is to build novel algorithms for the sparsity-motivated problem, and to
propose modifications that allow to overcome the main drawbacks, such as the loss
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of signal energy inside the interpolated segment. This could be achieved in several
ways:

1. modifications of the optimization problem, such as by proposing weighting
strategies in the regularizing norm,

2. post-processing of the interpolated signal,
3. decline from the requirement of convexity and proposition of a heuristic algo-

rithm for a non-convex problem.
In the part of the thesis concerning probabilistic modeling, we will follow up on

the research in the related field of audio declipping [89]. The aim is to draw new
perspectives on the existing work, allowing design of alternative algorithms.

Implementation and evaluation of the proposed methods in a reproducible
numerical experiment

A natural goal is the objective evaluation of the performance of the proposed meth-
ods, which must be preceded by an efficient implementation of these methods. Since
high objective reconstruction quality is what we aim to achieve, the evaluation will
be performed using objective metrics. Popular tools rely on the comparison of the
restored signal with a reference, which means that the experiment will be designed
based on clean audio signals with simulated degradation, such that the reference is
available. To express the quality numerically, objective evaluation will be carried
out by an entrywise metric, such as the signal-to-distortion ratio (SDR), as well
as by metrics predicting the results of subjective tests (PEMO-Q [90], Perceptual
Evaluation of Audio Quality (PEAQ) [91, 92]).

While subjective evaluation via standardized listening test would be a preferable
way to draw conclusions, it is excluded from the aims of the thesis due to expected
volume of signals to be analyzed.
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4 Methods based on sparse representations
In this chapter, we focus on the development of methods based on spectral sparsity,
the basis of which was already laid in section 2.3. In particular, we will build upon
the historically first, non-convex formulation (2.8) and relaxed convex tasks (2.9).

The primary motivation for development here is the attractiveness of modern
optimization methods based on proximal operators, which allow numerically efficient
solution of inverse problems in signal processing. Especially in the case of solving
convex problems (2.9) and in the situation of dropout of larger number of consecutive
samples, however, the current great disadvantage is the decrease of the energy of
the interpolated signal inside the filled gap. This phenomenon is illustrated in
figure 4.1, where we see that the reconstruction1 near the boundaries of the filled
segment is satisfactory, but towards the middle of the segment the signal energy
decreases substantially (while the estimation appears correct in terms of frequency
and phase). Such a decrease in an interpolated segment of length in the order of tens
of milliseconds is then also noticeable from a subjective listening point of view. The
cause of the drop in energy may be precisely the convex relaxation of the task, which,
by the principle of the applied ℓ1 norm, not only requires a low number of significant
time-frequency coefficients, but also penalizes those significant coefficients.
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time (s)

undamaged signal interpolation using simple convex relaxation

Fig. 4.1: Energy drop in the interpolated segment of the signal. We can see the orig-
inal undamaged signal (violin tone recording) in which a sample dropout of length
40 ms was simulated and was interpolated as a solution to the analysis problem
(2.9b).

Section 4.1 provides a closer look at the causes of the energy drop in the case of
convex formulations and proposes alternative formulations and algorithms for their
optimization. In section 4.2, we then return to the original idea of (unrelaxed) spar-
sity and propose algorithms that are competitive in terms of objective reconstruction
quality and computational time, in contrast to the historical OMP.

1The reconstruction was performed by the demonstration script available at https://github.
com/ondrejmokry/InpaintingRevisited.
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4.1 Methods based on convex relaxation

In this section we will build upon the relaxed synthesis and analysis formulations
(2.9a) and (2.9b), which we will complement with the possibility to weight the
individual (time-frequency) coefficients by a vector of weights w ∈ R𝐹 𝑁 :

ĉ = arg min
c∈C𝐹 𝑁

‖w⊙ c‖1 + 𝐼𝛤 (Tc), (4.1a)

x̂ = arg min
x∈R𝐿

‖w⊙ Lx‖1 + 𝐼𝛤 (x), (4.1b)

where the symbol ⊙ denotes the entrywise product. Note that the dimension of c
and w refers to the assumed time-frequency nature of the coefficients (see examples
1.9). For the sake of clarity, the dimension of the time-frequency coefficients will be
denoted 𝐾 instead of 𝐹𝑁 at some places in this section.

Remark 4.1. We leave the interpretation and specific form of w open at this point
and will return to it in section 4.1.3 after we have derived algorithms for solving the
problems (4.1). However, let us stress out that if 𝑤𝑛 > 0 for all 𝑛, then the weighed
norm ‖x‖w,𝑝 = ‖w⊙ x‖𝑝 is a true norm according to definition 1.2 for any ℓ𝑝 norm
(see example 1.3).

In section 1.2.2, several algorithms were presented for solving optimization prob-
lems that involve the sum of two functions whose proximal operators we can evaluate.
In the following sections, we will derive the specific forms of the algorithms for solv-
ing the two problems (4.1a) and (4.1b). Further modifications will be proposed in
the subsequent section 4.1.3.

4.1.1 Solving the synthesis formulation (4.1a)

Since we aim at using proximal algorithms, we first derive the proximal operator of
the weighted ℓ1 norm, prox‖·‖w,1 . We can conveniently use a property of the proximal
operator of separable functions, which can be simply put as follows [32, theorem 6.6]:
If 𝑓(c) = 𝑓1(𝑐1) + 𝑓2(𝑐2) + · · ·+ 𝑓𝐾(𝑐𝐾), then

prox𝑓 (c) = [prox𝑓1(𝑐1), prox𝑓2(𝑐2), . . . , prox𝑓𝐾
(𝑐𝐾)]⊤. (4.2)

Since on the space R1 the absolute value coincides with the ℓ1 norm, it holds
prox𝛾|·|(𝑐) = soft𝛾(𝑐) (see table 1.1). Considering that ‖c‖w,1 = |𝑤1𝑐1| + · · · +
|𝑤𝐾𝑐𝐾 |, the aforementioned property (4.2) can be used to express prox‖·‖w,1(c) =
[soft𝑤1(𝑐1), . . . , soft𝑤𝐾

(𝑐𝐾)]⊤, which we denote as softw(c). The eventual multiplica-
tion of the entire function ‖ · ‖w,1 by a scalar is then trivial – the scalar becomes
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part of the weights w, so we multiply all the thresholds by it:

prox𝛾‖·‖w,1(c) = prox‖·‖𝛾w,1(c) = [soft𝛾𝑤1(𝑐1), . . . , soft𝛾𝑤𝐾
(𝑐𝐾)]⊤. (4.3)

The second summand in the objective function (4.1a) is the indicator function of
the set 𝛤 , whose proximal operator is the projection onto this set, proj𝛤 , according
to the table 1.1. It can be shown (see remark 4.2) that, considering (2.4), the
following holds:

proj𝛤 (x) = (I−M⊤M)x + M⊤Mxtrue

= (I−M⊤M)x + M⊤xobs

= M⊤Mx + M⊤xobs.

(4.4)

With the knowledge of these proximal operators, the usage of CPA (algorithm
1.2) might be suggested, because the indicator function in the problem (4.1a) is in
composition with the (linear) synthesis operator T. Nonetheless, if this operator
corresponds to a tight frame, i.e., TT* = TL = 𝐴I for a constant 𝐴 > 0 (see
definition 1.7, theorem 1.8 and equation (1.9)), we can use the composition property
of table 1.1 and use the proximal operator of 𝐼𝛤 ∘ T (the symbol ∘ denotes the
composition):

prox𝐼𝛤 ∘T(c) = c + 1
𝐴

L(proj𝛤 (Tc)−Tc), L = T*, TL = 𝐴I. (4.5)

In this case, scalar multiplication by 𝛾 > 0 does not influence the indicator function,
thus with the knowledge of the proximal operators according to (4.3) and (4.5) we
can solve the problem (4.1a) using DRA (algorithm 1.1). The specific form of DRA
is in algorithm 4.1. For a more detailed derivation of step 4 see remark 4.3.

Algorithm 4.1: Douglas–Rachford algorithm for solving (4.1a)
input: 𝜀 ∈ [0, 1], 𝛾 > 0, d(0) ∈ C𝐹 𝑁

1 for 𝑛 = 1, 2, . . . do
2 c(𝑛) = soft𝛾w(d(𝑛−1))
3 choose 𝜆(𝑛) ∈ [𝜀, 2− 𝜀]
4 d(𝑛) = (1−𝜆(𝑛))d(𝑛−1)+𝜆(𝑛)c(𝑛)+𝜆(𝑛) 1

𝐴
L

(︁
M⊤xobs −M⊤MT(2c(𝑛) − d(𝑛−1))

)︁
5 end
6 c(𝑛+1) = c(𝑛) + 1

𝐴
L

(︁
M⊤xobs −M⊤MTc(𝑛)

)︁
output: ĉ = c(𝑛+1)

Note that from a theoretical point of view, the desired membership Tc(𝑛) ∈ 𝛤

would be guaranteed as a limit in an infinite number of iterations. In practice, we
therefore add an extra projection (line 6) to ensure a consistent solution for arbitrary
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termination of the algorithm. At the same time, it is clear that the solution of the
algorithm 4.1 is a vector of time-frequency coefficients. To obtain the interpolated
signal itself, it suffices to synthesize the solution of the algorithm; step 6 then ensures
that this synthesized signal also lies in the set 𝛤 .

Remark 4.2 (Derivation of the projection). From the definition of projection (see
also equation 1.23), it holds for x ∈ R𝐿

proj𝛤 (x) = arg min
z∈𝛤

‖z− x‖2, (4.6)

which is equivalent to minimizing ‖z − x‖2
2 = ∑︀𝐿

𝑛=1 |𝑧𝑛 − 𝑥𝑛|2. At the same time,
the set of feasible signals 𝛤 is defined entrywise according to equation (2.1): The
constraint x(𝑀) = xtrue(𝑀) is equivalent to 𝑥𝑛 = 𝑥true

𝑛 for 𝑛 ∈ 𝑀 . This allows us
to decompose the problem into individual entries2:

proj𝛤 (x)(𝑛) = arg min
𝑧
|𝑧 − 𝑥𝑛|2 subject to

⎧⎪⎨⎪⎩𝑧 = 𝑥true
𝑛 if 𝑛 ∈𝑀,

𝑧 arbitrary if 𝑛 /∈𝑀.
(4.7)

Together, we have

proj𝛤 (x)(𝑛) =

⎧⎪⎨⎪⎩𝑥true
𝑛 for 𝑛 ∈𝑀,

𝑥𝑛 for 𝑛 /∈𝑀,
(4.8)

or, the reliable samples (defined by the index set 𝑀) are preserved from the observed
signal xtrue and the remaining samples are taken from the argument x. This can
be written compactly precisely as proj𝛤 (x) = (I −M⊤M)x + M⊤Mxtrue (see also
remark 2.1).

Remark 4.3 (Derivation of the projection step of algorithm 4.1). For a tight frame,
it holds according to (4.5) and (4.4) that

prox𝐼𝛤 ∘T(c) = c + 1
𝐴

L(proj𝛤 (Tc)−Tc)
= c + 1

𝐴
L

(︁
(I−M⊤M)Tc + M⊤xobs −Tc

)︁
= c + 1

𝐴
L

(︁
M⊤xobs −M⊤MTc

)︁
.

Then

d(𝑛) = d(𝑛−1) + 𝜆(𝑛)
(︁
prox𝐼𝛤 ∘T

(2c(𝑛) − d(𝑛−1))− c(𝑛)
)︁

= d(𝑛−1) + 𝜆(𝑛)
(︁
2c(𝑛) − d(𝑛−1) + 1

𝐴
L

(︁
M⊤xobs −M⊤MT(2c(𝑛) − d(𝑛−1))

)︁
− c(𝑛)

)︁
= (1− 𝜆(𝑛))d(𝑛−1) + 𝜆(𝑛)c(𝑛) + 𝜆(𝑛) 1

𝐴
L

(︁
M⊤xobs −M⊤MT(2c(𝑛) − d(𝑛−1))

)︁
.

2We use the notation from remark 1.1.
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In particular, we obtain for 𝜆(𝑛) = 1 that

d(𝑛) = c(𝑛) + 1
𝐴

L
(︁
M⊤xobs −M⊤MT(2c(𝑛) − d(𝑛−1))

)︁
.

Remark 4.4 (Alternative algorithms). To solve problem (4.1a), DRA could be used
with conversely assigned functions, or there could be several ways to use a more
complex algorithm such as CPA. However, our goal is to find a solution to the
optimization problem and study how suitable this solution is in terms of signal
quality. The way of finding the solution is not crucial for us and hence alternative
algorithms are not being considered.

4.1.2 Solving the analysis formulation (4.1b)

The analysis formulation (4.1b), like the synthesis variant, involves the sum of two
functions with known (and easily enumerable) proximal operators, one of which is
in composition with a linear operator. However, unlike the synthesis formulation, in
practical situations the condition LL* = 𝐴I, which would guarantee easy enumer-
ability of the proximal operator of the composition of the ℓ1 norm and the analysis
operator L, is not satisfied. In the case of a tight frame, it holds L*L = TL = 𝐴I
and according to table 1.1

prox‖·‖w,1∘L(x) = 1
𝐴

T prox‖·‖w,1+𝐼ℛ(L)
(Lx). (4.9)

However, we cannot effectively evaluate a proximal operator containing an indicator
function in practice [1].

To solve problem (4.1b) we therefore use CPA following algorithm 1.2. Since in
this case the presence of the linear operator clearly distinguishes the functions used,
according to equation (1.27), 𝑓 = ‖ · ‖w,1 and 𝑔 = 𝐼𝛤 . For a particular form of CPA
we need to know the proximal operator of the (convex) conjugate function of the
function 𝑓 (see definition 1.20). Using table 1.1, we have (see remark 4.5)

prox𝜎(‖·‖w,1)*(c) = c− 𝜎 prox𝜎−1‖·‖w,1(𝜎−1c) = c− 𝜎 soft𝜎−1w(𝜎−1c) = c− softw(c).
(4.10)

The resulting specific form of CPA is in algorithm 4.2.
As mentioned in section 1.2.2, the convergence of the algorithm is guaranteed

for the choice of the parameters 𝜃 = 1 and 𝜎𝜏‖L‖2 ≤ 1. Specifically in the case of
tight frame, it holds ‖L‖2 = ‖L*L‖ = ‖TL‖ = ‖𝐴I‖ = 𝐴 [24, Proposition 2.71].

Remark 4.5 (Derivation of the proximal step). From equation (1.24), it holds for
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Algorithm 4.2: Chambolle–Pock algorithm for solving (4.1b)
input: 𝜏, 𝜎 > 0, 𝜃 ∈ [0, 1], x(0) ∈ R𝐿, c(0) ∈ C𝐹 𝑁, x̄(0) = x(0)

1 for 𝑛 = 1, 2, . . . do
2 c(𝑛) = c(𝑛−1) + 𝜎Lx̄(𝑛−1) − softw(c(𝑛−1) + 𝜎Lx̄(𝑛−1))
3 x(𝑛) = proj𝛤 (x(𝑛−1) − 𝜏Tc(𝑛))
4 x̄(𝑛) = x(𝑛) + 𝜃(x(𝑛) − x(𝑛−1))
5 end

output: x̂ = x(𝑛)

any scalar argument 𝑐 and parameters 𝜎 > 0 and 𝑤 > 0

𝜎 soft𝜎−1𝑤(𝜎−1𝑐) = 𝜎 sgn(𝜎−1𝑐) max
(︁⃒⃒⃒

𝜎−1𝑐
⃒⃒⃒
− 𝜎−1𝑤, 0

)︁
= 𝜎 sgn(𝑐) max

(︁
𝜎−1(|𝑐| − 𝑤), 0

)︁
= 𝜎 sgn(𝑐)𝜎−1 max (|𝑐| − 𝑤, 0)
= soft𝑤(𝑐).

Remark 4.6 (Clip function). Using the properties 𝑐 = sgn(𝑐) |𝑐| and max(𝑎, 𝑏) =
−min(−𝑎,−𝑏), it holds

𝑐− soft𝑤(𝑐) = 𝑐− sgn(𝑐) max(|𝑐| − 𝑤, 0)
= sgn(𝑐) |𝑐|+ sgn(𝑐) min(𝑤 − |𝑐|, 0)
= sgn(𝑐) min(𝑤, |𝑐|).

This function, denoted also clip𝑤, performs hard clipping of its argument on the
level 𝑤. Values of 𝑐 less than 𝑤 (in absolute value) remain unchanged, other values
are replaced by the value of 𝑤 with sign preserved according to the argument 𝑐. In
algorithm 4.2, it means that line 2 can be rewritten as c(𝑛) = clipw(c(𝑛−1)+𝜎Lx̄(𝑛−1)).

4.1.3 Choosing the weights and other modifications

In this section, we focus on the problem illustrated by figure 4.1, i.e., the interpola-
tion of a longer dropout (compact gap) in an otherwise undamaged signal. In this
case, the described approaches based on minimizing the ℓ1 norm provide a solution
that does not achieve sufficient energy in the interpolated segment. We first aim to
design the weights for the problem (4.1) to support the energy of the interpolated
segment and thus improve the quality of the reconstruction. Subsequently, we also
propose several possible extensions to the optimization algorithm itself.
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Offset and overlap-based weights

Assume further the use of the time-frequency representation in the role of the op-
erators L and T, namely the Gabor frame. According to example 1.9, the analysis
(and in the case of a tight frame also the synthesis) is performed over windows of
a given shape, length 𝑊 and shift 𝑎. Each shift corresponds to 𝐹 modulations of
this window, giving a total of 𝐹𝐿/𝑎 = 𝐹𝑁 atoms for a signal of length 𝐿, denoted3,
g1, . . . , g𝐹 𝑁 ∈ C𝐿. Following on [4], we hypothesize that the cause of the energy drop
in the interpolated segment is that the windows contributing largely to this segment
are not sufficiently represented in the sparse signal representation. The motivation
for this hypothesis is the interpretation of the problem (4.1) that we are looking for
a sparse representation of the uncorrupted part of the signal. Atoms having large
overlap with the missing segment (or small overlap with the undamaged part of the
signal) may be irrelevant to this representation, hence they do not play a significant
role in the solution. However, in the synthesis of the whole (reconstructed) signal,
the energy corresponding to such atoms is crucial.4

We therefore choose weights w ∈ R𝐹 𝑁 that measure the overlap of the gap and
the corresponding windows of our time-frequency representation in various ways.
However, since this overlap apparently depends on the position of the gap with
respect to the „grid“ of the individual windows (shifts), we additionally propose the
so-called offset, which allows the window shifts to be aligned with the position of the
gap. In the full variant, the center of the gap corresponds to the peak of a window
for some shift, while in the half variant the center of the gap is in the centerline of
two adjacent windows, see figure 4.2. We refer to the variant without any offset as
none.

As a measure of the overlap of atoms, we then choose the following options (for
completeness, including the variant without weighting). Recall that according to
remark 2.1, the matrix M implements the selection of samples corresponding to the

3Unlike example 1.9, here we index the atoms linearly for simplicity.
4An extreme example is a gap of such a length that it fully covers several shifts of the window.

The solution to such a problem then necessarily contains a sequence of zero samples, since windows
completely falling into the gap in the sparse representation necessarily have zero coefficients; see
[93] for details. In this thesis, such a pathological situation is not further addressed.
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Fig. 4.2: Offset variants and the corresponding weights w for atoms with no mod-
ulation. The top row shows the shifted windows for calculating the time-frequency
representation. The gray area represents the sample dropout. The vertical grid
shows the samples corresponding to the centers of each window (with the spacing
given by the parameter 𝑎 = 256). The bottom row then shows the vectors of weights,
horizontally aligned with the top series of plots; we choose a continuous display for
better readability, but in reality these are vectors of 10 values. The legend for the
weight variants is common to all graphs.

uncorrupted signal:

𝑤𝑛 = 1 no weights, (4.11a)

𝑤𝑛 = |supp(Mg𝑛)|
|supp(g𝑛)| support-based, (4.11b)

𝑤𝑛 = ‖Mg𝑛‖1

‖g𝑛‖1
ℓ1-norm-based, (4.11c)

𝑤𝑛 = ‖Mg𝑛‖2

‖g𝑛‖2
ℓ2-norm-based, (4.11d)

𝑤𝑛 = ‖Mg𝑛‖2
2

‖g𝑛‖2
2

energy-based. (4.11e)

Possible values of weights for individual (non-modulated) windows are also shown
in figure 4.2. Note that when the full or half offset is chosen, the obtained weight
vectors are symmetric along the centerline of the gap.

Remark 4.7. In the case where we are working with a Gabor frame, the denomi-
nators in the preceding formulas are unnecessary, since the values are the same for
all atoms; they can therefore be viewed as a positive scalar multiple of the function
‖·‖w,1, which has no effect on the argument of the minimum we are looking for. This
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fact may be seen from the particular shape of the individual atoms of the Gabor
frame – it is always a modulation (and translation, which we need not consider now)
of the window g, and this modulation does not affect the absolute values of the in-
dividual samples5. However, we keep the denominators in the formulas to illustrate
the idea that we are measuring the fraction of the atom in the uncorrupted part of
the signal. In addition, the formulas (4.11) are also applicable to representations
other than Gabor frames.

Iterative re-weighting

The iterative approach does not aim to support specific time-frequency coefficients
based on their influence on the interpolated segment, but to approximate, per in-
dividual case, the ℓ0 norm by the weighted ℓ1 norm [94, 5, 4]. The principle is to
compute weights based on a solution estimate, where small time-frequency coeffi-
cients are given large weights (hence are penalized more by minimizing the weighted
ℓ1 norm) and vice versa. Specifically, in the iterative procedure, we determine an
initial estimate, for example using the variant with no weights according to (4.11a),
recalculate new weights based on this solution, update the estimate, and repeat the
procedure. In the synthesis model, the solution are the time-frequency coefficients,
which we can directly use to compute the weights for the next iteration, see algo-
rithm 4.3. As a follow-on to [94], we suggest an analysis variant (algorithm 4.4),
which additionally includes a step 3 in which we analyze the current solution for
the subsequent calculation of the weights [5, 4]. Note that in both algorithms, the
parameter 𝜀 represents a small offset introduced to avoid division by zero.

Algorithm 4.3: Synthesis model with iterative re-weighting
input: initial weights w(0) ∈ R𝐹 𝑁, 𝜀 > 0

1 for 𝑖 = 0, 1, . . . do
2 c(𝑖) = arg minc∈C𝐹 𝑁 ‖w(𝑖) ⊙ c‖1 + 𝐼𝛤 (Tc)
3 𝑤

(𝑖+1)
𝑘 = 1/(|𝑐(𝑖)

𝑘 |+ 𝜀), 𝑘 = 1, . . . , 𝐹𝑁

4 end
output: x̂ = Tc(𝑖)

5In the continuous case, the modulation of the window 𝑔(𝑥) with a parameter 𝑓 is the function
e2πi𝑓𝑥 · 𝑔(𝑥). However, in the formulas (4.11), the modules of the vector elements come out when
breaking down the individual norms, see example 1.3. If we calculate the modulus for the value
of the modulated window, we get |e2πi𝑓𝑥 · 𝑔(𝑥)| = |e2πi𝑓𝑥| · |𝑔(𝑥)| = |𝑔(𝑥)|. The same property
naturally holds in the discrete case, which is why modulation does not really affect the absolute
value of the elements.
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Algorithm 4.4: Analysis model with iterative re-weighting
input: initial weights w(0) ∈ R𝐹 𝑁, 𝜀 > 0

1 for 𝑖 = 0, 1, . . . do
2 x(𝑖) = arg minx∈R𝐿 ‖w(𝑖) ⊙ Lx‖1 + 𝐼𝛤 (x)
3 c(𝑖) = Lx(𝑖)

4 𝑤
(𝑖+1)
𝑘 = 1/(|𝑐(𝑖)

𝑘 |+ 𝜀), 𝑘 = 1, . . . , 𝐹𝑁

5 end
output: x̂ = x(𝑖)

Iterative shortening of the interpolated segment

As in the previous case, we propose a procedure that solves the interpolation as
a sequence of several tasks. The motivation is that the reconstruction by the basic
sparsity-based method is more satisfactory at the edges of the filled segment, as
shown, for example, in figure 4.1. We base our approach on this observation, and
propose to repeatedly fill in the edges of the gap, thus progressively shortening the
gap, until the whole gap is filled.

Formally, we consider that the missing segment is defined by indices 𝑠 (first
missing sample) and 𝑓 (last missing sample) and its shortening always proceeds
by 𝑟 samples from both sides, see algorithm 4.5. The number of iterations of this
algorithm obviously depends on the length of the hole 𝑓−𝑠+1 and the value of 𝑟, see
line 1 of the algorithm. Step 3 can be implemented by any interpolation algorithm,
however, we focus on the above-derived algorithms 4.1 or 4.2.

Algorithm 4.5: Iterative shortening of the interpolated segment
input: x(0) ∈ R𝐿, gap borders 𝑠(0) = 𝑠 a 𝑓 (0) = 𝑓 , parameter 𝑟

1 𝐼 = ⌈(𝑓 (0) − 𝑠(0) + 1)/(2𝑟)⌉ // number of iterations
2 for 𝑖 = 0, 1, . . . , 𝐼 − 1 do
3 x(𝑖+1) = interpolation of x(𝑖) with a gap between samples 𝑠(𝑖) and 𝑓 (𝑖)

4 𝑠(𝑖+1) = 𝑠(𝑖) + 𝑟 // shrink the gap from the left
5 𝑓 (𝑖+1) = 𝑓 (𝑖) − 𝑟 // shrink the gap from the right
6 end

output: x̂ = x(𝑖+1)

According to the notation in problems (4.1a) and (4.1b) we use algorithm 4.5 to
obtain a sequence of sets of feasible solutions 𝛤 (𝑖+1) ⊂ 𝛤 (𝑖) and a sequence of weight
vectors w(𝑖). For a solution in each iteration, it holds

x(𝑖) ∈ 𝛤 (𝑖+1). (4.12)

Note that if we do not consider any atom weighting mechanism in the solution in step
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3, the same objective function will be optimized in each iteration of algorithm 4.5.
Thus, according to equation (4.12), x(𝑖+1) = x(𝑖) and the resulting solution will be
no different from simply using the default algorithm 4.1 or 4.2.

Time domain compensation for energy loss

In this section, we no longer manipulate the flow of the interpolation algorithm or the
problem as such, but propose a heuristic approach to compensate for the energy loss
by modifying the resulting signal. The motivation here is that we observe a similar
energy drop in nearby gaps of the same length interpolated by the same algorithm.

The compensation procedure for a given (already interpolated) gap has the fol-
lowing basic steps:

• we simulate several other gaps in its vicinity, from which we obtain the (tem-
poral) energy profile of the original and the interpolated signal,

• based on the ratios of these energies, we determine the optimal so-called com-
pensation function,

• we multiply the interpolated signal entrywise by this function to obtain the
desired energy increase in the interpolated segment.

To formalize this procedure, we first pose some basic assumptions.

Assumption 4.8 (Assumptions on the compensation function). For simplicity, let
us consider a continuous case where a continuous function 𝑥(𝑡) : [0, 𝑇 ] → R𝐿 is
considered in place of the signal x ∈ R𝐿. Furthermore, assume that a previously
discussed offset strategy applies. The goal is to interpolate the segment for6 𝑡 ∈
[𝑠, 𝑓 ] ⊂ [0, 𝑇 ] and then to multiply the resulting signal with a compensation function
𝑞(𝑡) : [0, 𝑇 ]→ [1,∞), which meets the following assumptions:

1. 𝑞(𝑡) is a smooth function,
2. 𝑞(𝑡) = 1 for 𝑡 ∈ [0, 𝑇 ] ∖ [𝑠, 𝑓 ],
3. d𝑞

d𝑡
= 0 for 𝑡 = 𝑠 a 𝑡 = 𝑓 ,

4. d𝑞
d𝑡
≥ 0 for 0 < 𝑡 < 𝑠+𝑓

2 ,
5. d𝑞

d𝑡
≤ 0 for 𝑠+𝑓

2 < 𝑡 < 𝑓 ,
6. 𝑞(𝑠 + 𝑡) = 𝑞(𝑓 − 𝑡) for 𝑡 ∈ [0, 𝑓 − 𝑠].

The assumptions of smoothness (item 1) and smooth connection to a constant
value of 1 outside the interpolated gap (items 2 and 3) are natural, since we do not
want to cause any jumps in the reconstructed signal. Symmetry (item 6) together
with a non-decreasing trend in the first half of the segment and a non-increasing one
in the second half (items 4 and 5) is based on the offset assumption. Due to it (by

6Unlike in the rest of the chapter, here we consider 𝑠, 𝑓 as values of (continuous) time, not
discrete indices.
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choosing either half or full offset) we can assume a symmetric decrease of energy,
which is indeed observed for example in figure 4.3.

The design of a suitable compensation function 𝑞(𝑡) and the corresponding dis-
crete vector q is summarized by algorithm 4.6. The key steps are illustrated in
figures 4.3 and 4.4.

Algorithm 4.6: Computation of the compensation vector q
input: the signal with interpolated time interval [𝑠, 𝑓 ], distribution of 𝐽

additional gaps, time positions 𝑡1, . . . , 𝑡𝐼 of the 𝐼 segments inside
the initial gap

1 simulation and interpolation of 𝐽 in the vicinity of the initial gap
2 X = energy matrix where 𝑥𝑖𝑗 = the energy of the 𝑖-th segment of the 𝑗-th

interpolated gap
3 Y = energy matrix where 𝑦𝑖𝑗 = the energy of the 𝑖-th segment of the intact

signal corresponding to the 𝑗-th gap
4 compute multipliers m as the least squares fit of the energy profiles X to

the targets Y:

m = arg min
m′∈R𝑚

‖Y − diag(m′) ·X‖2
2 =

[︃∑︀𝐽
𝑗=1 𝑦𝑖𝑗𝑥𝑖𝑗∑︀𝐽

𝑗=1 𝑥2
𝑖𝑗

]︃
𝑖=1,...,𝐼

(4.13)

5 𝑛𝑖 = √𝑚𝑖 for 𝑖 = 1, . . . , 𝐼
6 for 𝑖 = 1, . . . , ⌊𝐼/2⌋ do
7 𝑝 = (𝑛𝑖 + 𝑛𝐼+1−𝑖)/2
8 𝑛𝑖 = 𝑝
9 𝑛𝐼+1−𝑖 = 𝑝

10 end
11 𝑞(𝑡) = spline interpolation of the points [𝑠, 1], [𝑡1, 𝑛1], . . . , [𝑡𝐼 , 𝑛𝐼 ], [𝑓, 1] with

zero derivative in 𝑠 and 𝑓
12 sample 𝑞(𝑡) ↦→ q ∈ Rℎ, where ℎ is the number of initially interpolated

samples (gap length)
output: compensation vector q

Step 5 is justified by the fact that the vector m represents energy ratios, while
the output of our calculation must correspond to the ratio of the values of the
signal itself. The loop from line 6 (symmetrization of the vector n) then follows the
reasoning of using an offset, where we assume a symmetric evolution of the energy
decrease with respect to the gap centerline.
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Fig. 4.3: Segments for calculating the compensation of the energy drop in the time
domain. The reconstruction of the initial dropout (middle graph, dropout location
indicated by the gray area between times 𝑠 and 𝑓) is accompanied by two additional
dropouts in its vicinity (left and right graphs), where the intact signal is available
(plotted in gray). The position of the 𝐼 = 5 segments, symbolized by the colored
arrows, is the same relative to the gap in all three graphs. Adapted from [4].

(a) Energy in segments of the intact sig-
nal (black) and of the interpolated signal
(blue).

(b) Ratios between the energy of the
intact and the interpolated signal seg-
ments.

(c) Ratios from the plot 4.4b and the vec-
tor m according to equation (4.13).

(d) Symmetrization of the vector n =√
m and the resulting q.

Fig. 4.4: Visualization of the energy drop compensation procedure in the time do-
main. We use 𝐽 = 4 simulated dropouts and the compensation function uses the
energy from 𝐼 = 8 overlapping segments for the calculation. Adapted from [4].
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4.2 Heuristic approaches to the non-convex problem

The ultimate goal of the sparsity-based methods is finding a signal x̂ ∈ R𝐿 and/or
the corresponding time-frequency coefficients ĉ ∈ C𝐹 𝑁, such that the signal is con-
sistent with the observations (x̂ ∈ 𝛤 ) and the coefficients are sparse (‖ĉ‖0 ≪ 𝐹𝑁).
As already mentioned in section 2.3, the non-convexity of the ℓ0 norm causes that
the task is not feasible. To make the problem feasible, we might either relax the
ℓ0 norm to the ℓ1 norm, or relax the condition x̂ ∈ 𝛤 ; the latter option has been
explored in the pioneer work [20] solving the problem (2.8) with the OMP algorithm.
However, relaxing the problem using ℓ1 norm is likely to result in energy drop in the
interpolated segments, because this norm also penalizes the significant coefficients,
as presented in section 4.1. On the other hand, the approach based on the OMP is
not very efficient and the restoration quality is mediocre.

As an alternative, and in line with [6], this section derives the Sparse Audio
Inpainter (SPAIN) – an algorithm inspired by its precursor for audio declipping,
Sparse Audio Declipper (SPADE) [95, 7]. Some technical parts of the derivation are
omitted and can be found in the detailed technical report [2].

4.2.1 From ADMM to sparse audio inpainting

As in the cases of the convex relaxation in problems (2.9) and (4.1), we start from
two closely related formulations, distinguished by the presence of the synthesis or
the analysis operator:

(x̂, ĉ) = arg min
x∈R𝐿, c∈C𝐹 𝑁

‖c‖0 subject to x ∈ 𝛤, ‖x−Tc‖2 ≤ 𝜀, (4.14a)

(x̂, ĉ) = arg min
x∈R𝐿, c∈C𝐹 𝑁

‖c‖0 subject to x ∈ 𝛤, ‖Lx− c‖2 ≤ 𝜀. (4.14b)

Note that in contrast to (4.1), the optimization in either the synthesis or analysis
variant of (4.14) is carried out over both x and c.

Even though (4.14) relaxes the relationship of the consistent signal x and its
sparse coefficients c, it is still NP-hard due to the presence of the ℓ0 norm. The
idea of the SPAIN algorithm is to approach (4.14) with the ADMM (algorithm 1.3)
where each iteration searches for 𝜅-sparse coefficients c. The value of 𝜅 is governed
by a preset schedule, such that it increases during iterations of ADMM, and the
algorithm stops when the condition ‖x−Tc‖2 ≤ 𝜀 or ‖Lx− c‖2 ≤ 𝜀 is satisfied for
a chosen value of 𝜀.
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4.2.2 S-SPAIN

Synthesis-based Sparse Audio Inpainter (S-SPAIN) uses the ADMM based on the
following reformulation of (4.14a) for fixed sparsity 𝜅 (compare with (1.28)):

(x̂, ĉ) = arg min
x∈R𝐿, c∈C𝐹 𝑁

𝐼𝛤 (x) + 𝐼ℓ0≤𝜅(c) subject to Tc− x = 0, (4.15)

where the function 𝐼ℓ0≤𝜅 denotes the indicator function of the set of 𝜅-sparse vectors
{c ∈ C𝐹 𝑁 | ‖c‖0 ≤ 𝜅}.

Note that (4.15) is not meant to be necessarily solvable, since meeting all three
conditions (x ∈ 𝛤 , ‖c‖0 ≤ 𝜅, Tc − x = 0) for a small value of 𝜅 is improbable in
practice. This is, however, not a problem, since the formulation (4.15) serves only
as a starting point to derive the ADMM steps, which will approximate the solution
such that the condition Tc− x = 0 is effectively relaxed.

To employ algorithm 1.3, we need to find solutions to the subproblems7

c(𝑛) = arg min
c∈C𝐹 𝑁

𝐼ℓ0≤𝜅(c) + 𝜌
2‖Tc− x(𝑛−1) + u(𝑛−1)‖2

2, (4.16a)

x(𝑛) = arg min
x∈R𝐿

𝐼𝛤 (x) + 𝜌
2‖Tc(𝑛) − x + u(𝑛−1)‖2

2. (4.16b)

Equation (4.16a) corresponds to the update on line 2 of algorithm 1.3 with fixed
x(𝑛−1) ∈ R𝐿 and u(𝑛−1) ∈ R𝐿. Similarly, (4.16b) corresponds to line 3 of the same
algorithm with fixed c(𝑛) ∈ C𝐹 𝑁 and u(𝑛−1) ∈ R𝐿.

The update (4.16a) is a sparse synthesis problem, where the vector x(𝑛−1)−u(𝑛−1)

is to be optimally approximated8 by a 𝜅-sparse combination of the atoms (columns
of T). In case of non-orthogonal T, such as when T corresponds to the synthesis
operator of an overcomplete frame, this problem is NP-hard. In line with [95], we
can use the approximation

c(𝑛) = c(𝑛)
hard = hard𝜅

(︁
L(x(𝑛−1) − u(𝑛−1))

)︁
, (4.17)

where the operator hard𝜅 denotes hard thresholding, keeping 𝜅 largest values of its
argument and setting the rest to zero.

Remark 4.9. The choice (4.17) can be easily justified in the case of Parseval tight

7The factor 𝜌
2 in both (4.16a) and (4.16b) could be omitted due to the nature of the indicator

function and the fact that the actual value of the minima is not used.
8Note that the approximation can be exact for a suitable choice of T and large enough 𝜅,

meaning that the objective function of the attains zero value. Then, the task (4.16a) in fact
corresponds to the so-called exact sparse problem, see e.g. [96].

61



frame, i.e., in the case TL = I (see definition 1.7). Then

‖Tc− x(𝑛−1) + u(𝑛−1)‖2
2 = ‖Tc−TL(x(𝑛−1) − u(𝑛−1))‖2

2

= ‖T(c− L(x(𝑛−1) − u(𝑛−1)))‖2
2

≤ ‖c− L(x(𝑛−1) − u(𝑛−1))‖2
2,

since for a Parseval tight frame with analysis operator, it can be shown that ‖Tc‖ ≤
‖c‖ for any c [97, Lemma 5.4.5].9 It can also be shown (see [2, Remark 2]) that
the 𝜅-sparse c minimizing the norm ‖c − L(x(𝑛−1) − u(𝑛−1))‖2

2 can be expressed
as c(𝑛)

hard = hard𝜅(L(x(𝑛−1) − u(𝑛−1))). Returning to the above inequality, we have
‖Tc(𝑛)

hard−x(𝑛−1) + u(𝑛−1)‖2
2 ≤ ‖c

(𝑛)
hard−L(x(𝑛−1)−u(𝑛−1))‖2

2, which gives us an upper
bound on the error of the sparse approximation. This can be interpreted as a
guarantee of the goodness of c(𝑛)

hard as an approximate solution to the problem (4.16a).

As an alternative, we have proposed in [6] to use the OMP [60] to find the sparse
approximation of v = x(𝑛−1) − u(𝑛−1). In our case, this greedy iterative algorithm
works with a sequence of candidate solutions z(𝑖) such that ‖z(𝑖)‖0 = 𝑖, and residuals
r(𝑖) = Tz(𝑖)−v. The algorithm starts from z(0) = 0. Then, in 𝑖-th iteration, a column
from T which is maximally correlated with the current residual r(𝑖) is added to the
support of z(𝑖), increasing its ℓ0 norm by one, and z(𝑖+1) is obtained as an optimal
approximation of v with the columns of T defined by the currently chosen support10.
After 𝜅 iterations, we obtain z(𝜅) as an approximate solution to (4.16a), which we
denote c(𝑛)

OMP.
Since the OMP is an iterative algorithm which uses a computationally demanding

projection in each step, using c(𝑛) = c(𝑛)
OMP is much less efficient than the choice

c(𝑛) = c(𝑛)
hard. On the other hand, OMP can provide a better candidate in terms of

the objective function of (4.16a).
Contrary to the subproblem (4.16a), which needed to be approximated, the up-

date (4.16b) can be computed precisely as a projection x(𝑛) = proj𝛤 (Tc(𝑛) + u(𝑛−1))
(see table 1.1 and the definition of the proximal operator 1.22).

Altogether, S-SPAIN is summarized by algorithm 4.7, where the scheduling of 𝜅

is taken from [95], i.e., it increases by the value of 𝑠 every 𝑟 iterations.
As mentioned before, the algorithm stops when the norm ‖Tc(𝑛) − x(𝑛)‖2 drops

below the desired tolerance 𝜀.

9Note that [97, Lemma 5.4.5] only discusses coefficient vectors which are orthogonal to the null
space of T. Nevertheless, since Tc = 0 for c in the null space, the property can be easily extended
for any c.

10Since the support is fixed now, this approximation problem is not NP-hard and it has a closed
form solution.
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Algorithm 4.7: S-SPAIN
input: x(0) ∈ R𝐿, u(0) ∈ R𝐿, sparsity scheduling parameters 𝑟, 𝑠

1 𝜅(0) = 0
2 for 𝑛 = 1, 2, . . . do
3 if (𝑛− 1) mod 𝑟 = 0 then
4 𝜅(𝑛) = 𝜅(𝑛−1) + 𝑠
5 else
6 𝜅(𝑛) = 𝜅(𝑛−1)

7 end
8 if hard thresholding chosen then
9 c(𝑛) = hard𝜅(𝑛)

(︁
L(x(𝑛−1) − u(𝑛−1))

)︁
10 else
11 c(𝑛) = solution of the OMP algorithm with dictionary T and 𝜅(𝑛)

iterations to approximate the vector x(𝑛−1) − u(𝑛−1)

12 end
13 x(𝑛) = proj𝛤

(︁
Tc(𝑛) + u(𝑛−1)

)︁
14 u(𝑛) = u(𝑛−1) + Tc(𝑛) − x(𝑛)

15 end
output: x̂ = x(𝑛), ĉ = c(𝑛)

4.2.3 A-SPAIN

As in the synthesis case, the Analysis-based Sparse Audio Inpainter (A-SPAIN) is
based on the following reformulation of (4.14b) to fit problem (1.28) suitable for the
ADMM:

(x̂, ĉ) = arg min
x∈R𝐿, c∈C𝐹 𝑁

𝐼𝛤 (x) + 𝐼ℓ0≤𝜅(c) subject to Lx− c = 0. (4.18)

To employ ADMM, the augmented Lagrangian is minimized in two alternating steps
(compare to (4.16) and lines 2 and 3 of algorithm 1.3):

c(𝑛) = arg min
c∈C𝐹 𝑁

𝐼ℓ0≤𝜅(c) + 𝜌
2‖Lx(𝑛−1) − c + u(𝑛−1)‖2

2, (4.19a)

x(𝑛) = arg min
x∈R𝐿

𝐼𝛤 (x) + 𝜌
2‖Lx− c(𝑛) + u(𝑛−1)‖2

2. (4.19b)

Remark 4.10 (Update ordering). We have chosen a different order of the updates
in equations (4.19) compared with the general form of ADMM in algorithm 1.3. This
will create an almost equivalent variation on the ADMM, see e.g. [38, pp. 14, 22].
The reason for this alteration is to provide a more straightforward comparison of
A-SPAIN and S-SPAIN. We will follow this convention in the rest of the derivation,
including the final algorithm 4.8 with the coefficient update on line 8 and the signal
update on line 9.
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In the case of (Parseval) tight frames, it can be shown that the subproblem
(4.19b) is equivalent to the explicitly solvable minimization [2, Remark 3]

x(𝑛) = arg min
x∈R𝐿

𝐼𝛤 (x) + 𝜌
2‖x−T(c(𝑛)−u(𝑛−1))‖2

2 = proj𝛤
(︁
T(c(𝑛) − u(𝑛−1))

)︁
. (4.20)

According to [2, Remark 2], the solution to problem (4.19a) can be found using
the hard thresholding operator:

c(𝑛) = hard𝜅(𝑛)

(︁
L(x(𝑛−1) + u(𝑛−1))

)︁
. (4.21)

In contrast to equation (4.17) in the synthesis case, it is the exact solution in this
case, not only a possible approximation.

A-SPAIN is summarized in algorithm 4.8. It includes the same sparsity schedul-
ing as in the case of S-SPAIN. The stopping criterion follows the original formulation
(4.14a), i.e., we stop when ‖Lx(𝑛) − c(𝑛)‖2 < 𝜀 for chosen value of 𝜀.

Algorithm 4.8: A-SPAIN
input: x(0) ∈ R𝐿, u(0) ∈ C𝐹 𝑁, sparsity scheduling parameters 𝑟, 𝑠

1 𝑘(0) = 0
2 for 𝑛 = 1, 2, . . . do
3 if (𝑛− 1) mod 𝑟 = 0 then
4 𝑘(𝑛) = 𝑘(𝑛−1) + 𝑠
5 else
6 𝑘(𝑛) = 𝑘(𝑛−1)

7 end
8 c(𝑛) = hard𝑘(𝑛)

(︁
Lx(𝑛−1) + u(𝑛−1)

)︁
9 x(𝑛) = proj𝛤

(︁
T(c(𝑛) − u(𝑛−1))

)︁
10 u(𝑛) = u(𝑛−1) + Lx(𝑛) − c(𝑛)

11 end
output: x̂ = x(𝑛), ĉ = c(𝑛)
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5 Methods based on low-rank representations

All the methods previously discussed were based upon sparsity of the time-frequency
representation of plausible audio signals. In section 2.3, we have also briefly men-
tioned the social sparsity approach which allows to exploit structures in the spec-
trogram such as its tonal and transient components. However, there exists a more
semantic model of audio, which is connected to the non-negative matrix factoriza-
tion (NMF).

Consider a (power) spectrogram P ∈ R𝐹 ×𝑁 of a non-distorted audio signal. This
can be seen as a matrix whose dimensions correspond to the number of frequency
bins 𝐹 and number of temporal frames 𝑁 of the STFT used to analyze the signal,
see example 1.9 and remark 1.10. The goal of NMF is to (approximately) factorize
P as P ≈ WH with non-negative matrices W ∈ R𝐹 ×𝐾 and H ∈ R𝐾×𝑁, and
with small value of 𝐾. The interpretation, and the possible relation to semantics
of audio, is that the matrix W contains spectral patterns the audio is composed
of (such as individual tones), while the matrix H models the activation of these
patterns in time. This interpretation also justifies the non-negativity assumption,
since the non-negative power spectrogram P is modeled as a superposition of power
spectral patterns. The intuition is illustrated by figure 5.1 which shows the NMF of
a spectrogram of a violin recording.

This chapter is devoted to derivation of algorithms which use the NMF model1

to interpolate missing audio segments, as previously published in [8]. The task is
posed as an estimation problem, which assumes that the spectrogram of the inter-
polated audio signal is a collection of Gaussian random variables, and if organized in
a matrix, the variances of those variables exhibit the NMF structure. This approach
is partly based on a successful application to audio declipping [89, 98].

The core of the interpolation method lies in estimating this set of variables given
the observed parts of the signal. Section 5.2 presents an estimation approach based
on the expectation–maximization (EM) algorithm [99], which treats the missing
signal samples as latent variables of the problem. Two algorithms are described,
depending on the domain of the so-called complete data, which is a part of the
design of the EM algorithm. Section 5.3 then presents an innovative approach to
solving the estimation problem using an alternating-minimization strategy instead
of the EM algorithm. For implementation-related practical remarks, see appendix A.

1We will use the acronym NMF not only for the factorization itself, but also in related con-
texts, such as to describe the low-rank structure of a matrix imposed by the factorization, the
“modelability” of a matrix as a low-rank product etc.
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Fig. 5.1: Spectrogram decomposition with NMF using 𝐾 = 8 components. In the
matrix W, we may identify 5 tones (first 5 components), distinguished by different
fundamental frequency and different mixture of the harmonics. Components 6–8
are rather atonal; these cover for example the screeching sound of the violin bow
(component 6) and some residual noises. On the other hand, the matrix H dictates
how to “compose” the signal using these components. For example, we see that
the tone represented by component 2 appears twice at the beginning and then it is
repeated after two other notes (component 3 and 1). Another remarkable example
is the vibrato after frame 200, which is represented as repeated switching between
components 3 and 5 with fundamental frequencies close to each other.

5.1 Assumptions and notation for the NMF modeling

Recall that xtrue ∈ R𝐿 denotes the original, undistorted time domain signal. The
goal is to interpolate the missing samples given a partial observation xobs = Mxtrue

and a low-rank NMF model of the power STFT spectrum of the original signal. The
restored signal, i.e., an estimation of xtrue, shall be denoted x̂ ∈ R𝐿.

Denote Xtrue = {xtrue
1 , . . . , xtrue

𝑁 } the windowed time domain signal2, xtrue
𝑛 ∈ R𝑊

for 𝑛 = 1, . . . , 𝑁 . Although independence of the individual frames is not in fact
true in the case of overlapping frames, we will assume it throughout this chapter in
order to simplify the derivations. Due to the correspondence of the whole signal and
its windowed version3, estimating x̂ ∈ R𝐿 corresponds to estimating the individual
frames as X̂ = {x̂1, . . . , x̂𝑁}.

2Due to the constant window length 𝑊, we could also consider the windowed signal to be
a matrix Xtrue = [xtrue

1 , . . . , xtrue
𝑁 ] ∈ R𝑊 ×𝑁. However, since the length of the observed and missing

parts of the frames may differ for each 𝑛, we use the set notation for the sake of consistency.
3We are aware of the fact that in the case of overlapping (and window-weighted) time frames,

the correspondence of the signal and its framed version is not one-to-one. This is because using the
overlap-add procedure, several different framed signals may produce a single time domain signal.
However, this ambiguity is not considered significant.
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In each time frame 𝑛, the reliable samples can be selected by the multiplication
with the selection matrix M𝑛, as in remark 2.1, which gives the observed part of the
windowed signal Xobs = {xobs

1 , . . . , xobs
𝑁 }. Selection with the complementary masks

M𝑛 for 𝑛 = 1, . . . , 𝑁 results in the parts of the signal to be interpolated, denoted
Xmiss = {xmiss

1 , . . . , xmiss
𝑁 }. To establish the low-rank, NMF-related representation of

the spectrum of the original signal, we will resort to the STFT (see example 1.9) in
practice. However, the concept will be treated in a slightly more general manner,
for which we postulate the following assumptions.

Assumption 5.1 (Reconstruction operator). There exists a linear reconstruction
operator, represented by the matrix T ∈ C𝑊 ×𝐹, that reconstructs a signal window
xtrue

𝑛 ∈ R𝑊 from the representation ctrue
𝑛 ∈ C𝐹 as

xtrue
𝑛 = Tctrue

𝑛 , 𝑛 = 1, . . . , 𝑁. (5.1)

There also exists the analysis operator, represented by the matrix L ∈ C𝐹 ×𝑊.

Remark 5.2. Recall that for the sake of simplicity, we slightly abuse the notation
of the synthesis and analysis operators as defined in equation (1.9) and used in the
previous chapter. Here, the operators T and L only operate on the signal window
or coefficients related to this window, not the whole signal. Also, the relationship
of T and L is clear in the context of frames (where they are mutually adjoint), but
we keep it general for now and discuss the connection later in section 5.2.3.

Based on the established notation, the (synthesis) time-frequency coefficients
of the framed signal Xtrue can be organized in a matrix Ctrue = [ctrue

1 , . . . , ctrue
𝑁 ],

see also example 1.9. Similarly, an estimation of these coefficients (which allows
reconstruction of X̂) shall be denoted Ĉ = [ĉ1, . . . , ĉ𝑁 ].

Assumption 5.3 (Gaussian coefficients). Coefficients of the original audio in the
time-frequency domain are all mutually independent, and each coefficient follows
a complex circular zero-mean Gaussian distribution (see remark 5.4)

𝑐true
𝑓𝑛 ∼ 𝒩 (0, 𝑣𝑓𝑛). (5.2)

Note that due to the assumed independence of the individual time-frequency
coefficients, we can rewrite the distribution for the spectrum of a frame as

ctrue
𝑛 ∼ 𝒩 (0, D𝑛) , D𝑛 = diag ([𝑣𝑓𝑛]𝑓=1,...,𝐹 ) , (5.3)

where the symbol 𝒩 now represents a multivariate complex Gaussian distribution.

67



Remark 5.4 (Gaussian distribution). Similarly to the real case, the (𝑃 -variate)
complex zero-mean Gaussian distribution 𝒩 (0,Σ) can be defined using a 𝑃 × 𝑃

Hermitian positive definite complex covariance matrix Σ via the probability density
function (PDF) [100, Sec. 7]

𝑝(u) = det (πΣ)−1 exp
(︁
−u*Σ−1u

)︁
. (5.4)

It turns out that this PDF exhibits the circular symmetry, which means that it holds
𝑝(ei𝜃u) = 𝑝(u) for any phase shift 𝜃 [101, Appendix A.1.3]. In this work, we allow
also a shift by a vector 𝜇 ∈ C𝑃, which leads to the distribution denoted 𝒩 (𝜇,Σ)
and defined naturally by the PDF [44, Appendix A]

𝑝(u) = det (πΣ)−1 exp
(︁
−(u− 𝜇)*Σ−1(u− 𝜇)

)︁
. (5.5)

If u ∈ C𝑃 follows the circular symmetric (thus inherently zero-mean) Gaussian
distribution with a covariance matrix Σ, and A ∈ C𝑄×𝑃 is a full-rank constant ma-
trix, then v = Au follows the circular symmetric Gaussian distribution𝒩 (0, AΣA*)
[101, Appendix A.1.3]. Considering also the shift from zero, as in (5.5), and a con-
stant vector b ∈ C𝑄, we can generalize the formula for affine transformation of real
Gaussian vectors (see e.g. [102, Thm. 4.4]) into the complex case:

u ∼ 𝒩 (𝜇,Σ) =⇒ v = Au + b ∼ 𝒩 (A𝜇 + b, AΣA*). (5.6)

Assumption 5.5 (NMF structure of the coefficients). The variance matrix V =
[𝑣𝑓𝑛] has the low-rank NMF structure

𝑣𝑓𝑛 =
𝐾∑︁

𝑘=1
𝑤𝑓𝑘ℎ𝑘𝑛, (5.7)

where 𝐾 is small and the variables are non-negative reals. This model amounts
to V = WH with W and H being, respectively, 𝐹 ×𝐾 and 𝐾 × 𝑁 non-negative
matrices [89, Sec. 2.2].

Based on assumption 5.1 (Reconstruction operator), the observation is given by
the linear model

xobs
𝑛 = M𝑛xtrue

𝑛 = M𝑛(Tctrue
𝑛 ) = (M𝑛T) ctrue

𝑛 . (5.8)
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5.2 Maximum likelihood estimation by treating the
missing samples as latent variables

The audio interpolation task can be posed as a maximum likelihood estimation
(MLE) problem of the following form:

Ŵ, Ĥ = arg max
W, H

𝑝( Xobs |W, H ). (5.9)

In words, we search for the parameters W, H of the statistical model described
in the previous section 5.1, such that under this statistical model, the observed
data is most probable. The windowed signal block estimate X̂ = {x̂𝑛}𝑛=1,...,𝑁 is
then recovered from Ŵ, Ĥ and the reliable data Xobs = {xobs

𝑛 }𝑛=1,...,𝑁 via Wiener
filtering (see (5.14a)) and synthesis using T [98, Sec. IV.J].

From the linear observation model (5.8) and the assumed distribution of ctrue
𝑛 in

(5.3), we may derive that (xobs
𝑛 |W, H) ∼ 𝒩 (0, M𝑛TD𝑛T*M⊤

𝑛 ), see also equation
(5.12) below. This allows to express the objective of (5.9) as

𝑝(Xobs |W, H) =
𝑁∏︁

𝑛=1
𝑝

(︁
xobs

𝑛 |W, H
)︁

=
𝑁∏︁

𝑛=1
det

(︁
πM𝑛TD𝑛T*M⊤

𝑛

)︁−1
exp

(︁
−(xobs

𝑛 )⊤(M𝑛TD𝑛T*M⊤
𝑛 )−1xobs

𝑛

)︁
, (5.10)

where the product is a corollary of the assumption of independence of the individual
signal frames. Note that even though we have a closed expression for the objective
of the problem (5.9), it is non-convex with respect to the sought parameters W, H.
Thus, we propose to employ the EM algorithm to aim at finding at least a local
optimum.

5.2.1 The EM-tf algorithm

To design a particular form of the EM algorithm, we set the incomplete data to
correspond to the set of all the windows of the observed reliable signal, i.e., Xobs.
The complete data correspond to the STFT spectrum Ctrue ∈ C𝐹 ×𝑁 of the original
signal. The parameters to be estimated are 𝜃 = {W, H}, while their current estimate
is denoted 𝜃.

The EM algorithm aims at solving the MLE problem (5.9) by minimizing the
functional

𝑄(𝜃, 𝜃) = −
∫︁

log 𝑝(Ctrue | 𝜃)𝑝(Ctrue | Xobs, 𝜃) dCtrue (5.11)

by repeating two principal steps:
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1. E-step: Compute 𝑄(𝜃, 𝜃), i.e., the expected value Ĉ of Ctrue ∈ C𝐹 ×𝑁 (the
STFT spectrum of the original clean signal xtrue) using the current estimate
𝜃 of the parameters W, H and the reliable data Xobs.

2. M-step: Use the data from the expectation step as if it were actually mea-
sured to determine a maximum-likelihood estimated of the parameters 𝜃 by
minimizing 𝑄(𝜃, 𝜃) with respect to 𝜃. In our case, this step corresponds to
updating W and H as a decomposition of the posterior power spectrogram P.

After meeting a chosen stopping criterion (or after a fixed number of iterations), the
algorithm ends with Ĉ from the E-step as its output. The whole signal x̂ ∈ R𝐿 can
be formed by an overlap-add scheme from the corresponding time-domain frames
X̂ = {x̂𝑛 = Tĉ𝑛}𝑛=1,...,𝑁 .

Remark 5.6 (Signal constraints). In the original paper [89], the NMF-based algo-
rithm described above is applied to the problem of audio declipping. In that case,
signal constraints (such as exceeding the clipping levels) can be enforced heuristically
between the E-step and the M-step. This is done by modifying the distribution of the
time-frequency coefficients (by updating ĉ𝑛 and Σ̂𝑛 of (5.14) for each 𝑛), such that
the corresponding restored time-domain frames meet the given signal constraints.
Then, the posterior power spectrogram P is re-estimated given the distribution of
ĉ𝑛, the parameters W, H and the reliable data Xobs. However, no constraints are
needed in our interpolation setting where only the missing samples are being esti-
mated without modifying the known samples, thus the only constraint x̂ ∈ 𝛤 (see
section 2.1) is satisfied.

The whole algorithm is detailed in algorithm 5.1. The individual steps are jus-
tified in the following subsections.

E-step

This step estimates the STFT spectrum of xtrue by estimating the frequency spec-
trum ctrue

𝑛 of xtrue
𝑛 for each 𝑛. It follows from linearity of the transform in (5.8) and

from the distribution (5.3) that remark 5.4 applies and it holds
⎡⎣ctrue

𝑛

xobs
𝑛

⎤⎦ =
⎡⎣ ctrue

𝑛

(M𝑛T) ctrue
𝑛

⎤⎦ ∼ 𝒩
⎛⎝0,

⎡⎣ D𝑛 D𝑛T*M⊤
𝑛

M𝑛TD𝑛 M𝑛TD𝑛T*M⊤
𝑛

⎤⎦⎞⎠ . (5.12)

Since W and H are fixed in the E-step, the distribution of the measurement xobs
𝑛

is known. The aim is to estimate the complete data ctrue
𝑛 in the sense of minimal

mean squared error (MSE), i.e., to find its expected value ĉ𝑛. This is clear from
the conditional probability of the STFT coefficients given the observed time domain
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samples:

𝑝(Ctrue | Xobs, 𝜃) = 𝑝(Ctrue | Xobs, W, H)

=
𝑁∏︁

𝑛=1
𝑝(ctrue

𝑛 | xobs
𝑛 , W, H) =

𝑁∏︁
𝑛=1
𝒩 (ĉ𝑛, Σ̂𝑛), (5.13)

where, using the Gaussian assumptions and (5.12), it holds [103, Theorem 10.3]

ĉ𝑛 = D𝑛T*M⊤
𝑛

(︁
M𝑛TD𝑛T*M⊤

𝑛

)︁−1
xobs

𝑛 , (5.14a)

Σ̂𝑛 = D𝑛 −D𝑛T*M⊤
𝑛

(︁
M𝑛TD𝑛T*M⊤

𝑛

)︁−1
M𝑛TD𝑛. (5.14b)

Note that by the notation 𝒩 (ĉ𝑛, Σ̂𝑛) in (5.13) and also later in the same context, we
actually mean the probability density 𝑝 associated with the distribution 𝒩 (ĉ𝑛, Σ̂𝑛),
see equation (5.5).

Remark 5.7 (Connection to the Moore–Penrose pseudoinverse). If we set B =
M𝑛T

√
D𝑛 (the square root is applied on the diagonal elements), we see from equa-

tion (5.14a) that ĉ𝑛 =
√

D𝑛B*(BB*)−1xobs
𝑛 =

√
D𝑛B+xobs

𝑛 , where B+ is the Moore–
Penrose pseudoinverse of B, see also definition 1.16. In words, ĉ𝑛 is a least-squares
solution to the linear system Bz = xobs

𝑛 , scaled row-wise by the square roots of the
diagonal entries of D𝑛.

The expression 𝑝(Ctrue | 𝜃) from (5.11) can be broken down using (5.3) as

𝑝(Ctrue | 𝜃) =
𝑁∏︁

𝑛=1
𝑝(ctrue

𝑛 | 𝜃) =
𝑁∏︁

𝑛=1
𝒩 (0, D𝑛), (5.15)

where the parameters W, H appear in the matrices D𝑛 = diag([𝑣𝑓𝑛]𝑓=1,...,𝐹 ) due to
assumption 5.5 (NMF structure of the coefficients).

M-step

It can be shown that the minimization of (5.11) with respect to the parameters
W, H is equivalent to the minimization of the Itakura–Saito divergence between P
and the product WH, 𝐷IS(P |WH) (see equation (1.34)) [89, 44]. Here, P = [𝑝𝑓𝑛]
denotes the posterior power spectrum, which is given from (5.14) as

𝑝𝑓𝑛 = E
(︂⃒⃒⃒

𝑐true
𝑓𝑛

⃒⃒⃒2
| xobs

𝑛 , W, H
)︂

= |ĉ𝑛(𝑓)|2 + Σ̂𝑛(𝑓, 𝑓). (5.16)

The minimization of 𝐷IS(P | WH) can be performed by the multiplicative up-
dates of algorithm 1.4.
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Algorithm 5.1: Audio interpolation via EM-tf.
input: reliable samples Xobs = {xobs

𝑛 }𝑛=1,...,𝑁 , respective selection matrices
{M𝑛}𝑛=1,...,𝑁 , linear transform T ∈ C𝑊 ×𝐹

1 initialize W ∈ R𝐹 ×𝐾, H ∈ R𝐾×𝑁 non-negative
2 repeat

// E-step:

3 for 𝑛 = 1, . . . , 𝑁 do

4 D𝑛 ← diag ([𝑣𝑓𝑛]𝑓=1,...,𝐹 ) with [𝑣𝑓𝑛]𝑓=1,...,𝐹 being the 𝑛-th column of

the matrix V = WH

5 ĉ𝑛 ← D𝑛T*M⊤
𝑛

(︁
M𝑛TD𝑛T*M⊤

𝑛

)︁−1
xobs

𝑛

6 Σ̂𝑛←D𝑛−D𝑛T*M⊤
𝑛

(︁
M𝑛TD𝑛T*M⊤

𝑛

)︁−1
M𝑛TD𝑛

7 𝑝𝑓𝑛 ← |ĉ𝑛(𝑓)|2 + Σ̂𝑛(𝑓, 𝑓), 𝑓 = 1, . . . , 𝐹

8 end

// M-step:

9 repeat

10 W←W⊙

(︁
(WH)⊙[−2] ⊙P

)︁
H⊤

(WH)⊙[−1]H⊤ with P = [𝑝𝑓𝑛]

11 H← H⊙
W⊤

(︁
(WH)⊙[−2] ⊙P

)︁
W⊤(WH)⊙[−1] with P = [𝑝𝑓𝑛]

12 normalize columns of W, scale rows of H

13 until satisfied with the factorization
14 until convergence criteria met

output: Ĉ = [ĉ1, . . . , ĉ𝑁 ] , Ŵ = W, Ĥ = H
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5.2.2 The EM-t algorithm

An alternative formulation of the problem

As an alternative to the previously described EM-tf algorithm, the aim of the deriva-
tion in this section is to explicitly include the missing samples (which are to be in-
terpolated) into the problem formulation. We build the formulation upon the same
statistical model, given by assumptions 5.1 (Reconstruction operator), 5.3 (Gaus-
sian coefficients) and 5.5 (NMF structure of the coefficients). The MLE formulation
thus stays exactly the same as before:

Ŵ, Ĥ = arg max
W, H

𝑝( Xobs |W, H ). (5.9 revisited)

The difference is in the setup of the EM algorithm: As in the previous section 5.2.1,
the incomplete data correspond to the observed reliable signal Xobs. The difference is
that we set the complete data to correspond to the time domain samples, including
both the observed and the missing ones, i.e., {Xobs, Xmiss}.

Using this setting, we may rewrite the EM functional in (5.11) as

𝑄(𝜃, 𝜃) = −
∫︁

log 𝑝(Xtrue | 𝜃)𝑝(Xmiss | Xobs, 𝜃) dXmiss. (5.17)

E-step

Since the same statistical model as in section 5.2.1 is assumed, we recall from (5.3)
that ctrue

𝑛 ∼ 𝒩 (0, D𝑛) with D𝑛 = diag ([𝑣𝑓𝑛]𝑓=1,...,𝐹 ) and V = [𝑣𝑓𝑛] = WH. Since
it holds xtrue

𝑛 = Tctrue
𝑛 , the distribution of the time domain in frame 𝑛 is xtrue

𝑛 ∼
𝒩 (0, TD𝑛T*) (see remark 5.4), i.e.,

𝑝(Xtrue | 𝜃) =
𝑁∏︁

𝑛=1
𝑝(xtrue

𝑛 | 𝜃) =
𝑁∏︁

𝑛=1
𝒩 (0, TD𝑛T*) . (5.18)

Now to express the term 𝑝(Xmiss | Xobs, 𝜃), we need to find, for each 𝑛, the distri-
bution of xmiss

𝑛 given the observed samples xobs
𝑛 and the model parameters W and

H. For this purpose, we use the following reordering of the vector xtrue
𝑛 :

⎡⎣M𝑛xtrue
𝑛

M𝑛xtrue
𝑛

⎤⎦ =
⎡⎣ xobs

𝑛

xmiss
𝑛

⎤⎦ ∼ 𝒩
⎛⎜⎝0,

⎡⎢⎣M𝑛TD𝑛T*M⊤
𝑛 M𝑛TD𝑛T*M⊤

𝑛

M𝑛TD𝑛T*M⊤
𝑛 M𝑛TD𝑛T*M⊤

𝑛

⎤⎥⎦ =

⎡⎢⎣S11 S12

S21 S22

⎤⎥⎦
⎞⎟⎠ .

(5.19)
Due to the Gaussian assumptions, the posterior distribution of the complete data can
be expressed according to [103, Theorem 10.2] as (xmiss

𝑛 | xobs
𝑛 , W, H) ∼ 𝒩 (x̂miss

𝑛 , Ŝ𝑛)
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with mean

x̂miss
𝑛 = S21S−1

11 xobs
𝑛 = M𝑛TD𝑛T*M⊤

𝑛

(︁
M𝑛TD𝑛T*M⊤

𝑛

)︁−1
xobs

𝑛 (5.20)

and covariance matrix

Ŝ𝑛 = S22 − S21S−1
11 S12

= M𝑛TD𝑛T*M⊤
𝑛 −M𝑛TD𝑛T*M⊤

𝑛

(︁
M𝑛TD𝑛T*M⊤

𝑛

)︁−1
M𝑛TD𝑛T*M⊤

𝑛 .

(5.21)

In terms of the EM functional (5.17), this yields

𝑝(Xmiss | Xobs, 𝜃) = 𝑝(Xmiss | Xobs, W, H)

=
𝑁∏︁

𝑛=1
𝑝(xmiss

𝑛 | xobs
𝑛 , W, H) =

𝑁∏︁
𝑛=1
𝒩 (x̂miss

𝑛 , Ŝ𝑛). (5.22)

Remark 5.8. The relation to the estimation of ĉ𝑛 and Σ̂𝑛 defined by equation
(5.14) in section 5.2.1 is the following:

x̂miss
𝑛 = M𝑛Tĉ𝑛, (5.23a)
Ŝ𝑛 = M𝑛TΣ̂𝑛T*M⊤

𝑛 . (5.23b)

This precisely corresponds to xmiss
𝑛 = M𝑛xtrue

𝑛 = M𝑛(Tctrue
𝑛 ) = (M𝑛T)ctrue

𝑛 , in
line with the linear observation model in equation (5.8). In other words, given the
estimates ĉ𝑛 and Σ̂𝑛 of section 5.2.1 and the relation xmiss

𝑛 = (M𝑛T)ctrue
𝑛 , we arrive

at the same estimate of the missing samples xmiss
𝑛 as derived in equations (5.20) and

(5.21).

M-step

The crucial part of the EM algorithm is the estimation of the parameters W, H in the
M-step, given the posterior distribution of the missing temporal samples Xmiss. Even
though equations (5.18), (5.22) and (5.23) allow to express the functional (5.17) in
the closed form, it is expensive to compute and optimize directly. Thus, we proceed
to re-estimate the frequency coefficients corresponding to the signal estimated by
equation (5.23) and update W and H as the factorization of this spectrum.

For this, recall the analysis operator L from assumption 5.1. Using this operator,
we may define the posterior spectrum as Calt = [calt

1 , . . . , calt
𝑁 ], where calt

𝑛 = Lxtrue
𝑛 .

With the reordering used in equation (5.19), and in line with remark 2.2, we may
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rewrite this relation as

ctrue
𝑛 = L(M⊤

𝑛 M𝑛 + LM⊤
𝑛 M𝑛)xtrue

𝑛 = LM⊤
𝑛 xobs

𝑛 + LM⊤
𝑛 xmiss

𝑛 . (5.24)

Here, the term LM⊤
𝑛 xobs

𝑛 represents the (fixed, known) contribution of the reliable
samples to the frequency spectrum ctrue

𝑛 of the frame 𝑛. The term LM⊤
𝑛 xmiss

𝑛 , on
the other hand, represents the (random, unknown) contribution of the missing sam-
ples. As such, we get ctrue

𝑛 as an affine transformation of a Gaussian random vector
xmiss ∼ 𝒩 (x̂miss

𝑛 , Ŝ𝑛). This affine transformation is defined by the constant vector
is LM⊤

𝑛 xobs
𝑛 and the linear operator LM⊤

𝑛 . Using the results (5.20) and (5.21), we
may thus write that given xobs

𝑛 , W, H, it holds ctrue
𝑛 ∼ 𝒩

(︁
ĉalt

𝑛 , Σ̂alt
𝑛

)︁
with

ĉalt
𝑛 = LM⊤

𝑛 xobs
𝑛 + LM⊤

𝑛 x̂miss
𝑛 , Σ̂alt

𝑛 = LM⊤
𝑛 Ŝ𝑛M𝑛L*. (5.25)

Using the results (5.14) for the EM-tf algorithm, the above expressions could be
simplified to

ĉalt
𝑛 = LTĉ𝑛, Σ̂alt

𝑛 = LTΣ̂𝑛T*L*. (5.26)

In line with equation (5.16) in the EM-tf algorithm, the posterior power spec-
trogram is then defined entrywise as

𝑝𝑓𝑛 = E
(︁
|𝑠𝑓𝑛|2 | xobs

𝑛 , W, H
)︁

=
⃒⃒⃒
ĉalt

𝑛 (𝑓)
⃒⃒⃒2

+ Σ̂alt
𝑛 (𝑓, 𝑓), (5.27)

and factorized using the multiplicative updates of algorithm 1.4. The whole proce-
dure is summarized in algorithm 5.2.
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Algorithm 5.2: Audio interpolation via EM-t.
input: reliable samples Xobs = {xobs

𝑛 }𝑛=1,...,𝑁 , respective selection matrices
{M𝑛}𝑛=1,...,𝑁 , linear transforms T ∈ C𝑊 ×𝐹, L ∈ C𝐹 ×𝑊

1 initialize W ∈ R𝐹 ×𝐾, H ∈ R𝐾×𝑁 non-negative
2 repeat

// E-step:

3 for 𝑛 = 1, . . . , 𝑁 do

4 D𝑛 ← diag ([𝑣𝑓𝑛]𝑓=1,...,𝐹 ) with [𝑣𝑓𝑛]𝑓=1,...,𝐹 being the 𝑛-th column of

the matrix V = WH

5 ĉalt
𝑛 ← LTD𝑛T*M⊤

𝑛

(︁
M𝑛TD𝑛T*M⊤

𝑛

)︁−1
xobs

𝑛

6 Σ̂alt
𝑛 ←LT

(︂
D𝑛−D𝑛T*M⊤

𝑛

(︁
M𝑛TD𝑛T*M⊤

𝑛

)︁−1
M𝑛TD𝑛

)︂
T*L*

7 𝑝𝑓𝑛 ←
⃒⃒⃒
ĉalt

𝑛 (𝑓)
⃒⃒⃒2

+ Σ̂alt
𝑛 (𝑓, 𝑓), 𝑓 = 1, . . . , 𝐹

8 end

// M-step:

9 repeat

10 W←W⊙

(︁
(WH)⊙[−2] ⊙P

)︁
H⊤

(WH)⊙[−1]H⊤ with P = [𝑝𝑓𝑛]

11 H← H⊙
W⊤

(︁
(WH)⊙[−2] ⊙P

)︁
W⊤(WH)⊙[−1] with P = [𝑝𝑓𝑛]

12 normalize columns of W, scale rows of H

13 until satisfied with the factorization
14 until convergence criteria met

output: Ĉalt =
[︁
ĉalt

1 , . . . , ĉalt
𝑁

]︁
, Ŵ = W, Ĥ = H
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5.2.3 Conditions for the equivalence of EM-tf and EM-t

Assumption 5.1 postulated the operators T and L only as being linear with no
other relation. However, there are several natural setups, some of which make the
approaches of EM-tf and EM-t equivalent. The following list briefly discusses several
possible choices of the operators T and L:

1. T is unitary, L = T* = T−1:

It holds LT = I, thus the relations (5.26) yield ĉ𝑛 = ĉalt
𝑛 and Σ̂𝑛 = Σ̂alt

𝑛 , which
means that EM-tf and EM-t coincide. As an example, this is the case when
L is a unitary DFT represented by the matrix F ∈ C𝐹 ×𝑊 with 𝐹 = 𝑊 (i.e.,
the number of frequency bins equals the number of time-domain samples in
a signal window, see also (1.6)). Then, T = L−1 is the inverse DFT.

2. T is invertible, L = T−1:

Also in this case, we have from (5.26) that ĉ𝑛 = ĉalt
𝑛 and Σ̂𝑛 = Σ̂alt

𝑛 .

3. T is a Parseval tight frame synthesis operator, 𝐹 > 𝑊, L = T*, TL = I:

The two models are no longer equivalent, since LT represents the projection
operator on the range space of L. This can be seen directly from equation
(1.16) and the assumption TL = L*L = I. In the redundant case 𝐹 > 𝑊, this
projection differs from identity. As an example, this is the case of redundant
DFT, such as with 𝐹 = 2𝑊, i.e., twice as much frequency bins as is the number
of time-domain samples in a signal window.

4. T is a Parseval tight frame analysis operator, 𝐹 < 𝑊, L = T*, i.e., LT = I:

As in the first case, the relation LT = I results in the equivalence of EM-tf and
EM-t. However, the assumption 𝐹 < 𝑊 means that we do not have enough
frequency coefficients to reconstruct an arbitrary signal in the framed time
domain. To be specific, the time-domain solution (in each frame) is restricted
to the range space of T.

5. T is arbitrary, L = T+:

In this case, the matrix LT = T+T represents the orthogonal projection onto
the range space of T*. This is in general different from the identity, unless the
range space of T* is the whole coefficient space C𝐹.

6. L is arbitrary, T = L+:

Similarly to the previous option, LT = LL+ represents the orthogonal projec-
tion onto the range space of L. This is in general different from the identity,
unless the range space of L is the whole coefficient space C𝐹.
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5.3 Maximum likelihood estimation by treating the
missing samples as parameters: the AM algo-
rithm

Coming back to the MLE formulation (5.9), we may notice that the problem itself
was posed without explicitly considering the samples to be interpolated. However, an
alternative problem can be formulated including the missing samples as parameters:

Ŵ, Ĥ, X̂miss = arg max
W, H, Xmiss

𝑝
(︁
{Xobs, Xmiss⏟  ⏞  

parameters
} |W, H

)︁
, (5.28)

which is equivalent to

Ŵ, Ĥ, X̂miss = arg min
W, H, Xmiss

− log 𝑝
(︁
{Xobs, Xmiss} |W, H

)︁
, (5.29)

under the assumptions 5.1 (Reconstruction operator), 5.3 (Gaussian coefficients) and
5.5 (NMF structure of the coefficients). Since Xobs is fixed in the problem, we may
write the distribution of 𝑝({Xobs, Xmiss} |W, H) as 𝑝({Xobs, Xmiss} |W, H, Xobs).

Now recall that it stems directly from the assumptions that the distribution of
the reordered windows of the signal is

⎡⎣ xobs
𝑛

xmiss
𝑛

⎤⎦ ∼ 𝒩
⎛⎜⎝0,

⎡⎣M𝑛

M𝑛

⎤⎦ TD𝑛T*

⎡⎣M𝑛

M𝑛

⎤⎦⊤
⎞⎟⎠ . (5.19 with simplified notation)

To write down the probability density function, recall that the concatenation of
the selection matrices is unitary (see remark 2.2), thus it can be omitted in the
determinant appearing in equation (5.5). Furthermore, it simplifies the inverse of
the covariance matrix, because

⎛⎜⎝
⎡⎣M𝑛

M𝑛

⎤⎦ TD𝑛T*

⎡⎣M𝑛

M𝑛

⎤⎦⊤
⎞⎟⎠

−1

=
⎡⎣M𝑛

M𝑛

⎤⎦ (TD𝑛T*)−1

⎡⎣M𝑛

M𝑛

⎤⎦⊤

. (5.30)

Thus, using formula (5.5) for the Gaussian distribution, it holds

𝑝

⎛⎝⎡⎣ xobs
𝑛

xmiss
𝑛

⎤⎦ |W, H

⎞⎠
= det (πTD𝑛T*)−1 exp

⎛⎜⎝−
⎡⎣ xobs

𝑛

xmiss
𝑛

⎤⎦⊤ ⎡⎣M𝑛

M𝑛

⎤⎦ (TD𝑛T*)−1

⎡⎣M𝑛

M𝑛

⎤⎦⊤ ⎡⎣ xobs
𝑛

xmiss
𝑛

⎤⎦
⎞⎟⎠ . (5.31)
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We propose to minimize − log 𝑝 from formulation (5.29) via alternating opti-
mization. Due to the assumed independence of the time frames, we can perform the
optimization frame-wise by repeating two steps:

1. minimization with respect to the variables xmiss
𝑛 ,

2. minimization with respect to the model parameters W, H.
In the following sections, both problems are treated in detail, and connection with
the EM algorithm is briefly discussed.

Updating the signal

Minimizing − log 𝑝, or maximizing 𝑝, with respect to xmiss
𝑛 is equivalent to finding

the mode of the conditional distribution of xmiss
𝑛 given xobs

𝑛 , W and H. Due to the
Gaussian assumptions, the mode is equal to the expected value

x̂miss
𝑛 = E

(︁
xmiss

𝑛 | xobs
𝑛 , W, H

)︁
= M𝑛TD𝑛T*M⊤

𝑛

(︁
M𝑛TD𝑛T*M⊤

𝑛

)︁−1
xobs

𝑛 .

(5.20 revisited)
The whole signal frame, including the estimated missing samples x̂miss

𝑛 and the fixed
observed samples xobs

𝑛 , can be composed together as

x̂𝑛 = TD𝑛T*M⊤
𝑛

(︁
M𝑛TD𝑛T*M⊤

𝑛

)︁−1
xobs

𝑛 . (5.32)

Updating the model

We want to derive the updates directly from the optimization problem (5.29). Since
the missing samples are fixed in this step, we do not need to reorder the samples of
the signal frame x𝑛, which leads to

𝑝 (x𝑛 |W, H) = det (πTD𝑛T*)−1 exp
(︁
−(x𝑛)⊤ (TD𝑛T*)−1 x𝑛

)︁
, (5.33)

and therefore

− log 𝑝 (x𝑛 |W, H) = log det (πTD𝑛T*) + (x𝑛)⊤ (TD𝑛T*)−1 x𝑛. (5.34)

To simplify the derivation of the method, let us pose the following assumption.

Assumption 5.9 (Invertibility of the synthesis). The operator T is invertible and
L = T−1. In particular, this means that T is square, i.e., 𝐹 = 𝑊.

Under assumption 5.9, we see that det (πTD𝑛T*) = π𝑊 det (T)2 det (D𝑛) and
(TD𝑛T*)−1 = (T−1)*D−1

𝑛 T−1. Since T does not depend on the parameters W and
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H which are being optimized in this step, the problem boils down to

arg min
W,H

log det (D𝑛) +
(︁
T−1x𝑛

)︁*
D−1

𝑛

(︁
T−1x𝑛

)︁
. (5.35)

To break down the objective (5.35), recall that we have defined in assumption
5.3 that D𝑛 = diag ([𝑣𝑓𝑛]𝑓=1,...,𝐹 ) (which is straightforward to invert) and denote
T−1x𝑛 = c𝑛. Then, the objective can be rewritten as

log
𝐹∏︁

𝑓=1
𝑣𝑓𝑛 +

𝐹∑︁
𝑓=1

c*
𝑛(𝑓) 1

𝑣𝑓𝑛

c𝑛(𝑓) =
𝐹∑︁

𝑓=1
log 𝑣𝑓𝑛 +

𝐹∑︁
𝑓=1

|c𝑛(𝑓)|2

𝑣𝑓𝑛

. (5.36)

Now recall from (1.34) that the Itakura–Saito divergence is defined as

𝑑IS(𝑥 | 𝑦) = 𝑥

𝑦
− log 𝑥

𝑦
− 1 = 𝑥

𝑦
− log 𝑥 + log 𝑦 − 1. (5.37)

Optimizing 𝑑IS(𝑥 | 𝑦) with respect to 𝑦 allows to omit terms independent on 𝑦, thus

arg min
𝑦

𝑑IS(𝑥 | 𝑦) = arg min
𝑦

𝑥

𝑦
+ log 𝑦. (5.38)

This clearly corresponds to the expression in (5.36), therefore the minimization
(5.35) is equivalent to

arg min
𝑣𝑓𝑛

𝐹∑︁
𝑓=1

𝑑IS
(︁
|c𝑛(𝑓)|2 | 𝑣𝑓𝑛

)︁
, c𝑛 = T−1x𝑛, 𝑣𝑓𝑛 =

∑︁
𝑘

𝑤𝑓𝑘ℎ𝑘𝑛. (5.39)

Taking into account all the frames finally leads to the desired result that W and
H are obtained by minimizing 𝐷IS(P |WH) where 𝑝𝑓𝑛 = |(T−1x̂𝑛)(𝑓)|2 and x̂𝑛 is
the signal estimate from the previous step. The whole procedure is summarized in
algorithm 5.3.

Remark 5.10. A simple heuristic possibility is to compute the spectrum of x̂𝑛 as

ĉ𝑛 = Lx̂𝑛 = LTD𝑛T*M⊤
𝑛

(︁
M𝑛TD𝑛T*M⊤

𝑛

)︁−1
xobs

𝑛 (5.40)

and the power spectrogram 𝑝𝑓𝑛 = |ĉ𝑛(𝑓)|2, which would be applicable especially
for T which is not invertible. Then, the multiplicative updates can be applied to
minimize 𝐷IS(P |WH). However, this approach is not justified by the optimization
(5.33) with respect to W, H. The problem is that if we cannot compute the inverse
of (TD𝑛T*)−1 as AD−1

𝑛 B for some matrices A, B, we cannot separate the individual
diagonal entries of D𝑛 to fit it to the Itakura–Saito NMF problem.

Remark 5.11. Note that under assumption 5.9 (Invertibility of the synthesis),
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EM-tf is equivalent to EM-t (this is the first case discussed in section 5.2.3). How-
ever, the alternating minimization produces a slightly different algorithm, because
the covariance matrix is not considered in computing the power spectrogram – com-
pare line 7 of algorithm 5.3 with line 7 of algorithm 5.1.

Also note that the signal update in the AM algorithm closely resembles the E-step
in EM-tf and the model update is equivalent to the M-step of EM-tf. However, the
updates in AM are named differently on purpose to emphasize that AM is not
derived from the EM algorithm.
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Algorithm 5.3: Audio interpolation via AM.
input: reliable samples Xobs = {xobs

𝑛 }𝑛=1,...,𝑁 , respective selection matrices
{M𝑛}𝑛=1,...,𝑁 , invertible linear transform T ∈ C𝑊 ×𝐹

1 initialize W ∈ R𝐹 ×𝐾, H ∈ R𝐾×𝑁 non-negative
2 repeat

// Signal update:

3 for 𝑛 = 1, . . . , 𝑁 do

4 D𝑛 ← diag ([𝑣𝑓𝑛]𝑓=1,...,𝐹 ) with [𝑣𝑓𝑛]𝑓=1,...,𝐹 being the 𝑛-th column of

the matrix V = WH

5 ĉ𝑛 ← D𝑛T*M⊤
𝑛

(︁
M𝑛TD𝑛T*M⊤

𝑛

)︁−1
xobs

𝑛

6 x̂𝑛 ← T−1ĉ𝑛

7 𝑝𝑓𝑛 ← |ĉ𝑛(𝑓)|2, 𝑓 = 1, . . . , 𝐹

8 end

// Model update:

9 repeat

10 W←W⊙

(︁
(WH)⊙[−2] ⊙P

)︁
H⊤

(WH)⊙[−1]H⊤ with P = [𝑝𝑓𝑛]

11 H← H⊙
W⊤

(︁
(WH)⊙[−2] ⊙P

)︁
W⊤(WH)⊙[−1] with P = [𝑝𝑓𝑛]

12 normalize columns of W, scale rows of H

13 until satisfied with the factorization
14 until convergence criteria met

output: X̂ = [x̂1, . . . , x̂𝑁 ] , Ŵ = W, Ĥ = H
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6 Experiments
This chapter is dedicated to experimental evaluation of the methods proposed in
chapters 4 and 5. Possible ways to numerically assess the quality of the interpolated
signals are discussed in section 6.1. Section 6.2 then introduces heuristic indicators
related to the convergence of the algorithms. While global convergence is theoret-
ically provable for the methods based on convex relaxation, heuristic criteria need
to be employed in the other cases. This also concerns SPAIN and the NMF-based
methods, which is why later in this chapter, the heuristic convergence indicators are
employed to illustrate progression towards a stable solution. The experiment design
is outlined in section 6.3, followed by evaluation of the individual methods (section
6.4 and 6.5). The final section 6.6 presents comparison of selected methods with the
state of the art using objective criteria.

6.1 Metrics of reconstruction quality

The signal-to-distortion ratio (SDR) for the reference signal xtrue and the interpo-
lated signal x̂ is defined (in decibels) as

SDR(x̂, xtrue) = 10 log10
‖xtrue‖2

‖x̂− xtrue‖2 . (6.1)

In words, it corresponds to the signal-to-noise ratio (SNR) value where xtrue serves
as the (clean) signal and x̂−xtrue, i.e., the entrywise difference of the true signal and
its estimate, represents the noise. However, SDR is the preferred notation, since it
highlights that the difference between the two signals is perceived as distortion.

Note that in light of remark 2.3, all the methods developed throughout this thesis
can be labeled as consistent, since none of the algorithms alters the reliable/known
samples. Using the masking operators M and M (see also remark 2.1), the formula
(6.1) for SDR is equivalent to

SDR(x̂, xtrue) = 10 log10
‖Mxtrue‖2 + ‖Mxtrue‖2

‖M(x̂− xtrue)‖2⏟  ⏞  
= 0

+‖M(x̂− xtrue)‖2 , (6.2)

where ‖M(x̂ − xtrue)‖2 = 0 due to consistency of the solution x̂. This means that
the SDR value does not only consider the quality of the interpolation in the missing
parts of the signal, but depends also on the energy of the reliable signal ‖Mxtrue‖2.
However, this term does not reflect in any way the quality of the interpolation. For
this reason, the SDR is usually re-defined, such that it only considers the interpolated
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samples instead of the whole signal, i.e., as

SDRmiss(x̂, xtrue) = SDR(Mx̂, Mxtrue) = 10 log10
‖Mxtrue‖2

‖M(x̂− xtrue)‖2 . (6.3)

Remark 6.1 (Relation to MSE). A common entrywise error metric is the MSE,
which can be expressed using the norm as MSE(x̂, xtrue) = 1

𝐿
‖x̂ − xtrue‖2, where 𝐿

is the signal length. We can derive that

SDR(x̂, xtrue) = 10 log10
‖xtrue‖2

𝐿 ·MSE(x̂, xtrue)
= 10 log10 ‖xtrue‖2 − 10 log10 𝐿− 10 log10 MSE(x̂, xtrue). (6.4)

In words, SDR is inversely proportional to the logarithm of MSE, biased by the
logarithm of the energy of the reference signal and of the signal length. Even though
minimizing MSE and maximizing SDR with respect to x̂ are equivalent problems,
SDR is the preferred indicator, since it relates the error to the energy of the reference
signal.

Even though sample-wise metrics such as SDR and MSE objectively measure
the interpolation quality, they do not necessarily reflect the perceived quality of
the interpolated signal. In practice, the listener’s perception might be the actual
objective. However, as mentioned previously in chapter 3, the only way to conduct
such an evaluation is through standardized listening tests with a proper number
of listeners and in controlled environment. While such test can be designed for
a comparison of a few test signals, it is hardly a feasible method for evaluation of
large volumes of data.

For this reason, objective methods predicting the subjective quality of sound
are a common compromise. Unfortunately, no approach customized to evaluation of
interpolated audio signals has been established so far. A common, universal choice is
the Perceptual Evaluation of Audio Quality (PEAQ) [91], which predicts the human
rating of the difference between the degraded (or interpolated) and the reference
signals, and outputs a single value denoted as objective difference grade (ODG).
These values correspond to particular descriptions of the audible impairment, see
table 6.1. We use the Matlab code1 implemented according to the version of PEAQ
based on the ITU-R recommendation BS.1387-1 [92].

An alternative to PEAQ is the PEMO-Q [90], also implemented in Matlab2.

1http://www.mmsp.ece.mcgill.ca/Documents/Software/
2The software has been previously available for non-commercial use from https://www.

hoertech.de/de/produkte/pemo-q.html (see e.g. the archived version of the web at http://web.
archive.org/web/20200925200149/https://www.hoertech.de/de/produkte/pemo-q.html).
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PEMO-Q computes a scalar called the perceptual similarity measure (PSM), which
can be mapped onto the ODG score as used in the PEAQ.

Tab. 6.1: Interpretation of the ODG

ODG Impairment description
0 Imperceptible
−1 Perceptible, but not annoying
−2 Slightly annoying
−3 Annoying
−4 Very annoying

6.2 Convergence indicators

In the case of iterative algorithms, it is crucial to assess convergence of the iterates.
In the case of algorithms for convex optimization, theoretical convergence guarantees
are available, see the individual examples in section 1.2.2. For the heuristic algo-
rithms (this is the case of SPAIN or NMF-based methods), we must rely on empirical
indicators. These may include tracking the objective function of the respective opti-
mization problem or its relative change: Denote 𝑓(𝑢) the objective function, which
depends on the variable(s) denoted compactly as 𝑢, and {𝑢(0), 𝑢(1), . . . } the iterates
generated by the chosen algorithm. It is natural to define the relative objective
change (ROC) in 𝑛-th iteration as the quantity

ROC(𝑛) =

⃒⃒⃒
𝑓(𝑢(𝑛))− 𝑓(𝑢(𝑛−1))

⃒⃒⃒
|𝑓(𝑢(𝑛−1))| . (6.5)

Similarly, for vector iterates {u(0), u(1), . . . }, the relative solution change (RSC) is
instinctively defined as

RSC(𝑛) = ‖u
(𝑛) − u(𝑛−1)‖
‖u(𝑛−1)‖

. (6.6)

From the practical point of view, RSC is the preferred indicator, since progression of
RSC towards zero suggests that further iterations are not likely change significantly
the output of the algorithm, hence the reconstruction quality. This is expected to be
in line with the evolution of SDR in iterations, computed according to either formula
(6.1) or (6.3) with x̂ being the current iterate (or its time-domain counterpart, e.g.,
if the iterates belong to the time-frequency space).
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6.3 Dataset and experiment protocol

The overall focus of the thesis is on the interpolation of real-world musical signals.
However, to allow the quality assessment described before, the impairment is simu-
lated using initially clean signals, such that the ground truth (reference) is always
available.

In the demonstrative examples, we use individual recordings with a sampling
rate of 16 or 44.1 kHz. For larger comparative experiments, we rely on the set of
10 musical recordings from the EBU SQAM dataset [104, 105], sampled at 44.1 kHz
and shortened to 7 seconds, as used in recent related publications [4, 72, 98].

Regarding the setting of the extrapolation problem, two scenarios are usually
considered in the literature. In the first scenario, samples at random positions are
discarded. While real-world degradation is not likely to appear in this way, the
scenario allows to interpolate significant portions of the input signal (at reasonable
quality), such as 80 % of lost samples considered in [62, 1].

The second, and herein preferred scenario consists in the interpolation of compact
gaps. In particular, the methods considered in this thesis aim at filling middle-length
gaps, i.e., missing segments of length in the range of tens of milliseconds. Drop-outs
of a given length are simulated at pseudo-random positions across the clean signals
in a particular way which has several convenient effects:

1. A single test signal always includes gaps of equal length, which allows to study
performance of the algorithms depending on the gap length.

2. Adjacent gaps are guaranteed to be separated by long enough reliable context,
such that context-based methods (e.g. the extrapolation technique described
in section 2.2) can treat every gap independently.

3. Existence of multiple gaps in a single audio signals increases the reliability of
the objective, perception-based metrics.

The gap distribution is illustrated by figure 6.1, showing a selection of degraded
signals as used in [8] and later in sections 6.5 and 6.6. The protocol used in [4],
which projects also to section 6.4.1, was slightly different; in particular, the gap
positions were allowed to differ depending on the source signal. However, and most
importantly, both strategies preserve fairness of the experiment in the sense that all
methods are being compared on the same gaps.

For any details not mentioned in the text, as well as the raw data, see the links
to the source codes in appendix B.
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Fig. 6.1: Example of the gap distribution for two signals and two gap lengths. The
gaps are indicated by the gray areas, as well as zero values of the signal. Observe that
due to the pseudo-random scheme of the gap generation, the individual dropouts
appear at virtually the same positions independent on gap length, as well as in same
places in the signal, relative to its length.

6.4 Evaluation of sparsity-based methods
The experiments in this section aim at demonstrating the effectiveness of the meth-
ods described in chapter 4. Since a rather large number of particular algorithms and
variants have been proposed, the evaluation is divided into smaller experiments. The
algorithms based on convex relaxation (section 4.1) and on heuristic use of ADMM
(section 4.2) are discussed in subsections 6.4.1 and 6.4.2, respectively.

6.4.1 Convex relaxation

The first experiment concerns the offset choice. Since symmetry of the energy profile
inside the interpolated gap is a prerequisite of some of the methods, the focus is on
choosing among the full and half variants (see section 4.1.3). Figure 6.2 presents
a comparison using numerous choices of the signal, gap length and position and atom
weighting. While the choice of the offset variant appears to have only a minor effect
in case of the synthesis model, the half variant is favored in case of the analysis
model. The most remarkable difference is in the analysis model using iterative
weights, where half offset largely improves the results with low SDR, compared to
the full variant (see figure 6.2b). For this reason, the subsequent experiments are
performed using the half offset only.
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Fig. 6.2: Experiment on choosing the offset. Each point of the scatter plot represents
one of 200 interpolated gaps (10 signals, 5 gap lengths from 10 to 50 ms, 4 gaps
per signal). Per each weighting type and each model, the percentage represents the
fraction of results above the diagonal line, i.e., in favor of the half offset.

Figure 6.2 includes an overview of possible choices of the atom weights – either
the explicit variants from equation (4.11), or the iterative choices defined via algo-
rithms 4.3 and 4.4. However, figure 6.3 presents a clearer and broader comparison
depending on the model (synthesis or analysis) and gap length. The first observa-
tion is that the proposed atom weighting globally leads to higher quality (in terms
of SDR) compared to the non-weighted reference. The best choice of weights de-
pends on the signal model – while iterative weights surpass all other options in the
analysis model (except for the shortest gaps), the best results in the synthesis case
are obtained with weights computed using ℓ2 norm or energy (squared ℓ2 norm) of
the atoms. Finally, this experiment reveals that in most cases, the analysis model
is a better choice than the synthesis one, especially with proper atom weighting.

To evaluate the approaches of iterative gap shortening (algorithm 4.5) and time
domain compensation (algorithm 4.6), an illustrative example with fixed weighting
approach is presented in figure 6.4. Looking at the dependence of reconstruction
quality with respect to the gap length, the iterative gap shortening leads to opposite
effects for the synthesis and analysis models (see figure 6.4a). Despite the observed
improvement in the synthesis model, the SDR increase is only minor (compare with
figure 6.3), and it does not outweigh the increased computational cost caused by the
iterative nature of the shortening.

The time domain compensation is appealing in the analysis case, where this
strategy leads to comparable results with the algorithm using iterative weights (see
figure 6.4b). Note that both approaches (iterative re-weighting of algorithm 4.4
and the time domain compensation of algorithm 4.6) include multiple runs of the
simple interpolation algorithm 4.2. In re-weighting, it is one run per each iteration
of algorithm 4.4, in time domain compensation, it is one run per each “training” gap
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(denoted 𝐽 in figure 6.4b). The notable observation here is that in the latter case,
even values of the parameter 𝐽 as small as 2 lead to a measurable improvement.
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Fig. 6.3: Experiment on weighting the atoms, for half offset. In each graph, the lines
in lighter shade represent results from the other model to simplify visual comparison
(i.e., both graphs plot the data for both the synthesis and the analysis model, but
differ in what is highlighted).
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Fig. 6.4: Experiment on time-domain modifications based on algorithms 4.5 and
4.6. Both illustrations use half offset and energy-based atom weights (4.11e). For
the time domain compensation in 6.4b, results using the iterative weights are also
plotted for reference (this is mainly motivated by the results shown in figure 6.3b).
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6.4.2 Heuristic approaches

To illustrate the action of SPAIN, we take a close look at the convergence properties
and resulting performance of the proposed variants on two illustrative interpolation
problems. Based on section 6.3, the first scenario is a random loss of 60 % sam-
ples, the second scenario features gaps of length 30 ms. Table 6.2 shows results of
both interpolation problems using the variants of SPAIN proposed in section 4.2:
S-SPAIN (H) and S-SPAIN (OMP) represent the synthesis variants with the coeffi-
cient update realized using hard thresholding and OMP, respectively (see algorithm
4.7). A-SPAIN (algorithm 4.8) uses exact evaluation of the coefficient update, thus
it only appears as a single variant. Additionally, S-SPAIN and A-SPAIN coincide
in case of an invertible transform [2, Section 7]. This is the case of choosing DFT
with no redundancy, which is displayed in the last row of table 6.2.

Regarding the reconstruction quality, table 6.2 shows that redundancy in the
transform is beneficial. On the other hand, using OMP in S-SPAIN promised more
precise coefficient update, but did not lead to better quality in this example.

The convergence properties are studied more in figure 6.5. Since SPAIN is applied
frame-wise, the stopping criterion may lead to different number of iterations in each
frame. For this reason, figure 6.5 shows overlay of results for all the frames at the
same time.3 Concerning convergence of the objective, S-SPAIN (OMP) appears to
be faster than S-SPAIN (H). However, it struggles to decrease the value in the range
below 10−1 in case of several time frames. Convergence of the objective of A-SPAIN
using the same redundancy of DFT was the slowest. On the other hand, the unitary
variant was the fastest (but reaching lower SDR values).

Note that the observations regarding all variants of SPAIN, i.e., the preferability
of hard thresholding in S-SPAIN and overall lead of A-SPAIN, are in line with the
original publication [6], where the experiment was conducted using larger set of
signals.

3Note that in the case of compact gaps (figure 6.5b), only a minority of time frames is effectively
being interpolated. For this reason, plots in figure 6.5b feature less lines compared to figure 6.5a.
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Tab. 6.2: Illustrative comparison of SPAIN variants. Note that SDR is computed
both on the whole signal and on the interpolated samples only. In contrast to the
previous experiments, a single signal (violin recording) sampled at 16 kHz is used.

method DFT
red.

60 % missing samples 10× 30 ms gaps
SDR SDRmiss PEMO-Q PEAQ SDR SDRmiss PEMO-Q PEAQ
(dB) (dB) ODG ODG (dB) (dB) ODG ODG

S-SPAIN (H) 2 29.35 27.10 −2.59 −2.33 23.60 11.80 −1.34 −0.47
S-SPAIN (OMP) 2 27.56 25.31 −2.90 −3.13 21.60 9.81 −2.94 −0.58

A-SPAIN 2 29.55 27.31 −2.62 −2.18 22.32 10.52 −1.61 −0.47
A-SPAIN 1 27.80 25.55 −2.87 −3.05 17.09 5.29 −2.99 −0.59
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Fig. 6.5: Illustrative comparison of SPAIN variants, with focus on convergence prop-
erties. The unitary variant denotes A-SPAIN using DFT with no redundancy (see
also table 6.2). The algorithm is applied frame-wise, and it is stopped when the
tolerance 𝜀 = 10−2 is reached. For this reason, number of iterations in each frame
may differ, which is also why all metrics are shown per each frame.
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6.5 Evaluation of NMF-based methods
The first goal of this section is to demonstrate the convergence properties of the
estimators described in chapter 5. The illustrative signal is an excerpt of the song
Mamavatu, containing the acoustic guitar and the drums, sampled at 16 kHz. The
sample loss was in this preliminary test was simulated according to the random
scenario, loosing 60 % of the signal samples. The corrupted signal was interpo-
lated using EM-tf, EM-t and AM (algorithms 5.1, 5.2, and 5.3, respectively). All
algorithms shared the settings #1 of table 6.3. To allow comparison of all three
algorithms, two settings of the transform T were considered – either the inverse
DFT (i.e. with the number of frequency channels 𝐹 = 𝑊 ), or its redundant variant
with 𝐹 = 2𝑊 . These choices represent cases 1 and 3 of section 5.2.3, respectively.

The results are presented in figure 6.6, where possible convergence was tracked
using several metrics (see section 6.2). The AM algorithm features remarkable
convergence properties, while the SDR indicates better performance for the EM-
based algorithms. This motivates inclusion of the compromise algorithm denoted
AM-to-EM-tf, which starts by a chosen number of AM iterations (5 in this example)
and then switches to EM-tf.

The second experiment, which concludes this section, focuses on validation of
the observations from figure 6.6 in the compact gap scenario. For the sake of this
experiment, the set of 10 signals described in section 6.3 was used, with gaps of
length ranging from 20 to 80 ms. Only the case of 𝐹 = 𝑊 and invertible transform
T representing the inverse DFT was considered, see the settings #2 from table 6.3
for details.

The results, presented in figure 6.7, support the previous observations, especially
that the difference in reconstruction quality (in terms of SDR) between AM and
EM-tf is not significant. Nonetheless, AM reached its peak faster, as seen also
in the RSC. Note that due to computational demands of the problem, objective
was not tracked in this case. However, the previous experiment suggests that RSC
mostly corresponds to the convergence of the algorithm with respect to its objective
value (see figure 6.6). A new observation is that this phenomenon depends on the
gap length – the longer the gap, the slower the convergence of EM-tf is, compared
to AM.
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Tab. 6.3: Overview of the experiment settings for NMF based methods. All cases
share sine window with 50 % overlap [106, Sec. V.C]. The value 𝐹 corresponds
to the length of the (possibly oversampled) DFT. The inner loop refers to the
multiplicative updates of W and H in each of the algorithms.

data and degradation
𝑊 𝐹 𝐾

iterations figuresignals sample rate sample loss outer inner

#1 1 16 kHz 60 % 1024 1024 20 70 10 6.6or 2048
#2 10 44.1 kHz 10 gaps 4096 4096 20 50 10 6.7
#3 10 44.1 kHz 10 gaps 4096 4096 20 100 10 6.8
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Fig. 6.6: Comparison of the convergence properties of EM-tf, EM-t and AM, in-
cluding the switching variant AM-to-EM-tf. The legend in the middle plot applies
for the whole figure. Note that the first column does not show comparable quanti-
ties, since the objective depends on the choice of 𝐹 and also on the algorithm. In
particular, the formula for log likelihood switches after the initializing iterations of
AM-to-EM-tf, which is disregarded on purpose in the plot.
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Fig. 6.7: Comparison of the performance of EM-tf , AM, and the switching variant
AM-to-EM-tf (switching after 5 iterations). The left column shows the evolution
of the SDR over iterations, the right column shows the RSC. Both the metrics
are averaged over the dataset and plotted together with 95% confidence interval
represented by the light colored areas.
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6.6 Comparative study featuring the state-of-the-art
interpolators

The derivation and evaluation of the interpolation methods is concluded by compar-
ing selected algorithms with the state of the art. The focus is on the interpolation
of middle-length gaps, which allows the use of context-based approaches. From the
variety of available methods, several representative competitors are chosen:

• The AR-based methods are usually represented by Janssen’s iterative approach
[47] or by Etter’s forward and backward extrapolation [49], see section 2.2 for
details. An extension in the present experiment is the modified Janssen’s
method, which differs from the original one in signal segmentation – the AR
model is presumably estimated per overlapping time frames in the original
method, but the modified version considers each gap (including short context
around it) separately. Furthermore, all these methods are presented in two
versions, depending on the chosen estimator of the AR coefficients and denoted
by the respective Matlab function: lpc (minimizing forward prediction error)
and arburg (Burg’s method [48, Sec. 5.1.2]).

• The convex approach (section 4.1) is represented by the analysis based algo-
rithm 4.2 with either energy-based or iterative weights (see equation (4.11e)
and algorithm 4.4, respectively).

• A-SPAIN (algorithm 4.8) serves as a representative of the ADMM-based fam-
ily of methods. However, successors of SPAIN have already been developed,
namely SPAIN-MOD and SPAIN-LEARNED [72], outperforming the original
algorithm. SPAIN-MOD treats the gaps together with their context, instead
of overlapping signal frames. SPAIN-LEARNED further improves the quality
of the interpolation by a dictionary learning step, namely by deforming the
STFT to allow a sparser representation than using the STFT.4

• The NMF-based methods are represented by EM-tf and AM, i.e., algorithms
5.1 and 5.3, respectively.

Remark 6.2 (Particular settings of the signal models). With the intention of fair
comparability, all relevant methods used a sine window of length 𝑊 = 4096 samples
(approx. 92 ms) with 50% overlap. This concerns all methods using STFT (i.e.,
methods based on ℓ1 minimization, A-SPAIN-LEARNED and NMF), A-SPAIN and
Janssen. Methods based on NMF and ℓ1 norm were applied with equal window
length and number of frequency channels (𝐹 = 𝑊 ). On the other hand, A-SPAIN-
LEARNED used 𝐹 = 2𝑊 , and similarly A-SPAIN used DFT with redundancy 2.

4Similar modification has been proposed also for the convex approach; however, it has been
shown to be inferior to A-SPAIN-LEARNED [73].
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The AR-based methods used a model of order 𝑝 = 512. The context of modified
Janssen’s and Etter’s methods was set to 4096 samples, while A-SPAIN-LEARNED
used a longer context (8192 samples) for the sake of the dictionary learning. These
values were chosen based on the corresponding studies, where they have shown good
performance. For particular choices of all the parameters of the individual methods,
please refer to the published source code accompanying the article [8] (see the link
in appendix B).

Remark 6.3 (AR-based methods). In current literature, the AR-based methods are
usually represented by Etter’s method using either linear prediction [4] or Burg’s
method [81, 107]. Janssen algorithm appeared in the seminal article Audio Inpaint-
ing [20] using linear prediction error and temporal windows. The modified version
was used only recently in [8], inspired by the approach of SPAIN-MOD [72]. Re-
garding the AR model estimators, Kauppinen and Roth prefer the Burg’s method
for audio signal extrapolation [51, Sec. 4.2]. However, comparison of the estimators
in the context of audio interpolation, especially when being part of the iterative
Janssen’s method, is missing in the literature.

Remark 6.4 (Deep-learning-based methods). Study including methods based upon
deep learning is left for future research. Comparability with optimization-based
methods is difficult because successful methods usually aim at spectrogram inpaint-
ing [81, 82, 108]. This approach is hardly adaptable to the scenarios discussed in
section 6.3, where temporal samples are being discarded, since such a degradation
does not correspond to a simple drop-out of spectrogram columns. Furthermore,
neural networks are usually trained for a fixed input size, which makes testing with
variable gap length difficult.

For the compact-gap scenario and 10 test signals (see section 6.3), the averaged
performance results are shown in figure 6.8 (for complete results, see appendix C).
From the proposed methods (displayed in bold), the NMF-based approaches (both
EM-tf and AM) scored the best in terms of the SDR. For gaps above 40 ms, perfor-
mance of the NMF-based methods drops rather fast, similarly to Janssen. A possible
cause is the estimation of the missing samples via Wiener filtering (as mentioned
in section 5.2) from a limited number of samples. This effect appears especially
when long gaps are considered, since those gaps induce presence of signal frames
with large number of missing samples. A similar step appears within the Janssen
algorithm in the signal update step [109, Sec. 3.3].

The sparsity based methods appeared to be inferior in this experiment. However,
note that previously surpassed methods such as plain ℓ1 minimization or the OMP
(see e.g. the experiment in [4]) have been omitted.
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The perceptually-motivated comparison was realized using both PEMO-Q and
PEAQ (see section 6.1). The first observation is that PEAQ was mostly indecisive
in this study (except for disfavoring the iteratively weighted ℓ1 relaxation). This
might be due to the fact that local degradation is not largely reflected in the PEAQ
algorithm.

More credible scores were obtained using PEMO-Q. The largest discrepancy
between the ODG and SDR results appears in the case of A-SPAIN (reaches scores
comparable with EM-tf and AM) and the convex approach with iterative weights
(scores the lowest globally). Also the (frame-wise) Janssen’s method was slightly
more favored in terms of ODG, compared to the SDR.
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Fig. 6.8: Comparison of the developed algorithms with the state-of-the-art methods
for interpolation of short to middle-length gaps. The legend is common for all the
plots. Where applicable, the quality metrics were tracked during iterations and the
figure shows the peak values. Note that this strategy is applied separately per each
test instance, as well as per each quality criterion. Also note that for the sake of
readability, the ODG axis for PEAQ is cropped, even though the ODG ranges from
−4 to 0.
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Tab. 6.4: Elapsed times of the methods used in the comparative study. Both iter-
ations and time to peak are counted/measured to the point where the peak SDR
is reached, where applicable. In other words, the iterations and durations come
from the same data used to generate the SDR subplot of figure 6.8. The maximum
number of (outer) iterations of EM-tf, AM and all variants of the Janssen algorithm
was set to 100. The mean and median values are computed across all the signals
and gap lengths considered in the experiment.

method
mean values median values

iterations time (s) time (s) iterations time (s) time (s)
to peak to peak per iteration to peak to peak per iteration

analysis ℓ1 (energy) — 53.30 — — 48.34 —
analysis ℓ1 (iterative) — 675.72 — — 747.51 —
A-SPAIN — 43.55 — — 42.87 —
A-SPAIN-LEARNED — 6599.70 — — 6325.10 —
EM-tf 42.74 2602.37 62.66 23 1432.15 61.68
AM 17.29 740.55 41.82 4 161.20 41.12
Janssen, lpc 15.13 23.58 1.38 3 4.92 1.26
Janssen, arburg 9.66 15.44 1.92 3 5.36 1.44
modified Janssen, lpc 5.19 10.26 1.67 1 2.59 1.45
modified Janssen, arburg 6.16 15.45 2.29 2 3.92 2.13
Etter, lpc — 0.03 — — 0.03 —
Etter, arburg — 0.34 — — 0.34 —

Even though the overall focus of the experiment is on reconstruction quality
rather than speed of the algorithms, we present the elapsed times for the sake of
completeness in table 6.4.

First, note that the number of iterations have been only tracked in the case of
the Janssen algorithm and the NMF-based methods. For the convex approach, the
number of iterations was fixed rather high (2000), since the aim was to converge
to global minimum of the respective convex problem. In the case of the iterative
weights, the outer cycle was run for 10 iterations (see algorithm 4.4), leading to
10 times higher computational load compared to using the energy-based weights. As
previously mentioned in section 6.4.2, tracking times and performance per iteration
in SPAIN is not feasible, since meeting the stopping criterion largely changes from
frame to frame (see figure 6.5). While this is not the case of A-SPAIN-LEARNED,
which is based on the STFT, the computational load is hugely increased by the
dictionary learning step. Finally, Etter’s method is non-iterative, and is clearly the
fastest according to table 6.4.

Regarding the NMF-based methods, we observe that the number of iterations
needed to reach the peak SDR is much lower for AM, compared to EM-tf. In
particular, observe from the median values that in half of the cases, AM reached
its peak SDR in less then 4 iterations. This corresponds also to the experiments
presented in section 6.5. Furthermore, the time per iteration of AM is slightly lower
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than that of EM-tf, which is in line with [8, Rem. 4]. However, in the context of the
rest of the methods, both EM-tf and AM rank among the slower ones.

Concerning the variants of the Janssen algorithm, the results indicate slightly
higher computational cost of the Burg’s method. Overall, the elapsed times to peak
rank among the faster methods, especially with regard to a very fast progression
towards the peak.

The experimental part of the thesis is concluded by an illustration of the per-
formance of the methods on a particular signal. To this end, figures 6.9 and 6.10
present an example taken from the comparative experiment. The signal under test
is the guitar recording with gap length of 40 ms. Only an excerpt of the recon-
struction is shown for readability reasons, as well as only a subset of methods, with
the iteration being plotted chosen based on SDR. This particular test instance was
selected due to the observation that the results for the guitar signal correlate the
most with the average values for all signals (compare figures 6.8 and C.1).

A detailed inspection of the solution of the convex relaxation (denoted as the
analysis ℓ1) in both figure 6.9 and 6.10 reveals the remainder of a minor energy
drop in both interpolated gaps. On the other hand, it appears that no “parasite”
components are introduced in the signal.

Notably, A-SPAIN-LEARNED exhibits an unusual behavior in the first of the
displayed gaps and represents reliably only the lowest frequency content (see the
corresponding plot in figure 6.10). While this individual case did not largely affect
the average performance shown in figure 6.8, it has a visible effect in context of the
particular signal (see figure C.1).

Since all the methods discussed are context-based, interpolation of the first dis-
played gap is expected to be contaminated by the close presence of the onset of
a new chord. This onset is evident from the waveform envelope in figure 6.9, while
its overflow into the interpolated gap is more visible in the spectrograms in figure
6.10. The most high-frequency content (above 4 kHz) is introduced in the case of
A-SPAIN; on the other hand, this effect is not too apparent in the case of EM-tf
and Janssen algorithm.
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Fig. 6.9: Illustrative reconstruction (waveforms) of the guitar recording (signal
a58_guitar_sarasate in appendix C) with gaps of length 40 ms (highlighted by the
gray areas). The blue waveform represents the interpolated signal, the black parts
(visible only in the gaps) come from the reference signal.
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Fig. 6.10: Illustrative reconstruction (spectrograms) of the guitar recording (signal
a58_guitar_sarasate in appendix C) with gaps of length 40 ms. The gap positions
are not highlighted, however, they exactly match those of figure 6.9. Note that all
the plots share the colormap, even though the color scale is not displayed.
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Conclusions and perspectives
The thesis was devoted to the study and development of new algorithms for the
interpolation of missing parts in audio signals. The main ambition was twofold:
The first goal was to improve the performance of existing methods based on sparsity
of audio signals in a transformed domain. The second goal was to challenge the
state of the art using novel methods based either on sparse or on structured signal
representations.

To fulfill the goals of the thesis, chapter 1 compiled necessary theoretical back-
ground regarding inverse problems and audio signal processing, with focus on audio
signal interpolation. The overview of the state of the art was presented in chapter 2,
where the goals of the thesis emerged and have been stated later in chapter 3. In the
core part of the thesis, two main classes of methods were studied, and both classes
have been enriched by novel algorithms and modifications of the existing ones.

Chapter 4 presented the use of spectrogram sparsity to solve the audio inter-
polation problem. The synthesis and analysis perspectives have been formulated
in a relaxed, convex form, and suitable proximal algorithms have been adopted for
solving the respective problems. This approach has been supplemented with novel
atom weighting and two time-domain-based heuristic procedures to tackle the en-
ergy loss in the interpolated signal segment. Alternatively, the declipping algorithm
SPADE has been adapted for audio interpolation and coined SPAIN. In addition
to the synthesis- and analysis-based flavors (S-SPAIN and A-SPAIN, respectively),
the novel variant of S-SPAIN using sub-iterations of OMP has been proposed.

Chapter 5 introduced three interpolation algorithms based on probabilistic mod-
eling and on the assumption that the spectrograms of convenient audio signals have
a particular structure related to the NMF. As in the case of SPAIN, EM-tf, is
based on a successful precursor for audio declipping. The other two, EM-t and AM,
are newly derived estimators from the same assumptions, serving as alternatives to
EM-tf.

The evaluation of the proposed methods in chapter 6, including the comparison
with the state of the art, fulfilled the goals of the thesis. The experiments concerned
all aforementioned classes of methods, namely algorithms based on the convex relax-
ation of the sparsity assumption, on heuristic use of the ADMM for the non-convex
problem (i.e., SPAIN), and on signal model using probabilistic NMF. All previously
derived algorithms have been empirically proven to be viable in terms of both entry-
wise (SDR) and psychoacoustics-based quality metrics (PEMO-Q, PEAQ). While
PEAQ did not give decisive results, both SDR and PEMO-Q indicated dominance
of the NMF-based methods. In terms of SDR, the state of the art has been im-
proved in the case of short gaps (10–30 ms) and equal results have been achieved
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up to gap length of 50 ms. On the other hand, PEMO-Q favored Janssen’s iterative
AR-based algorithm. Even though AR-based methods dominated in the case of gap
lengths above 60 ms, a notable competitor was A-SPAIN-LEARNED, a successor of
the A-SPAIN algorithm.

While most of the dissertation ideas have been previously published by the author
(see the list of author’s bibliography), the thesis included a more thorough treatment,
as well as new perspectives on the topic. Regarding the experiments, the illustration
of SPAIN in section 6.4.2 is novel. Furthermore, the state of the art comparison in
section 6.6 not only gathered the results from the original experiments, but included
more reference methods and a more complex analysis.

Even though chapter 6 presented broad range of experiments to evaluate the
methods and compare the results with the state of the art, two more aspects could
be suggested: first, comparison of optimization- and learning-based methods, and
second, standardized listening testing. The first aspect stems from unavailability of
a fair test protocol allowing such comparison, as discussed in remark 6.4. Similarly,
proper listening tests are considered infeasible for the amount of data evaluated
objectively throughout chapter 6. However, a possible future goal is to design a lis-
tening test aiming at validation of the PEMO-Q outputs in the presence of audible
artifacts specific for interpolated signals.

Further perspectives for future research regarding optimization-based methods
include, but are not limited to, the following directions:

The first promising idea is to employ psychoacoustics in the interpolation pro-
cess, aiming at subjective listening quality of the resulting signal. Atom weighting
based on hearing thresholds and masking have been proposed in the context of au-
dio declipping [110], which can be readily applied in place of the weights designed
in chapter 4 of the thesis. However, preliminary tests in this direction have not
proved the approach viable in case of gap interpolation. Another idea is the use of
psychoacoustically motivated representations of audio signals instead of STFT, such
as ERBlets [111], which has been studied only moderately in [62].

The second possible direction is further research in previously established com-
binations with deep learning, such as using the deep prior [112] or unfolding [113].
While deep prior has been recently applied for interpolation of gaps in audio sig-
nals [108], unrolling has been studied only in the context of spectrogram phase
reconstruction [87]. A novel possible approach consists in using parts of successful
neural networks as regularizing terms in an optimization-based method. For exam-
ple, suitability of a candidate signal could be measured using a previously trained
discriminator of a generative adversarial network [114].
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List of symbols and notation

Symbol Description Link

General notation

R, C real, complex numbers
F any number field, usually R or C
ℜ(𝑐), ℑ(𝑐), 𝑐 real and imaginary part of a number 𝑐, complex conjugate
sgn(𝑐) sign function, sgn(𝑐) = 𝑐

|𝑐| for 𝑐 ∈ R or 𝑐 ∈ C,
except for sgn(0) = 0

exp(𝑐) exponential function, alias to e𝑐 for 𝑐 ∈ R or 𝑐 ∈ C
⌊𝑟⌋, ⌈𝑟⌉ floor, ceiling of a real number 𝑟

(𝑎, 𝑏), [𝑎, 𝑏] open, closed interval from 𝑎 to 𝑏, 𝑎, 𝑏 ∈ R
(half-open intervals analogously)

|𝐶| cardinality of the set 𝐶 (not to be confused with absolute
value of a number)

ri(𝐶) relative interior of the set 𝐶

‖ · ‖ norm on any vector space, including the operator norm 1.2, 1.14
‖ · ‖𝑝 𝑝-norm of a vector 1.3
‖ · ‖F Frobenius norm of a matrix 1.3
⟨·, ·⟩ inner product of two vectors 1.4
𝛿𝑖,𝑗 Kronecker delta, 𝛿𝑖,𝑗 = 1 for 𝑖 = 𝑗, otherwise 0
ℛ(𝑇 ) range space of an operator 𝑇 1.13
𝑇 *, 𝑇 −1, 𝑇 + adjoint, inverse, pseudoinverse of an operator 𝑇 1.15, 1.16
𝑓 ∘ 𝑔 composition of functions or operators, (𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥))

Vectors and matrices

x, x(𝑛) = 𝑥𝑛 vector x = [𝑥1, . . . , 𝑥𝑁 ]⊤∈ F𝑁, its 𝑛-th entry (scalar component) 1.1
x(𝑀) selection by an index set, e.g., x({𝑚, 𝑛}) = [𝑥𝑚, 𝑥𝑛]⊤ 1.1
supp(x) support of a vector, i.e., the set of indices of its non-zero entries,

supp x = {𝑛 | 𝑥𝑛 ̸= 0}
A⊤, A* transpose, Hermitian transpose of the matrix A
⊙ Hadamard (entrywise) product of vectors or matrices
A⊙[𝑛] entrywise 𝑛-th power of the matrix A
det (A) determinant of the matrix A
diag(x) diagponal matrix from the vector x ∈ F𝑁,

A = diag(x) ∈ F𝑁×𝑁 with 𝑎𝑛𝑛 = 𝑥𝑛 and 𝑎𝑚𝑛 = 0 for 𝑚 ̸= 𝑛

𝑑IS(𝑎 | 𝑏) Itakura–Saito divergence between numbers 𝑎 and 𝑏 (1.34)
𝐷IS(A | B) Itakura–Saito divergence between matrices A and B (1.34)
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Symbol Description Link

Optimization

inf, sup infimum, supremum of a set or a function
𝒟(𝑓) domain of a function 𝑓 : 𝑉 → R ∪ {∞},

𝒟(𝑓) = {𝑢 ∈ 𝑉 | 𝑓(𝑢) <∞} ⊆ 𝑉

𝑓* convex conjugate function 1.20
ℱ(𝑉 ) set of lower semicontinuous convex functions on 𝑉

with non-empty domain
𝐼𝐶 indicator function of a set 𝐶, 𝐼𝐶(𝑥) = 0 for 𝑥 ∈ 𝐶, otherwise ∞
prox𝑓 proximal operator of a function 𝑓 1.22
proj𝐶 projection onto a set 𝐶 (1.23)
soft𝜏 soft thresholding with threshold 𝜏 (1.24)
hard𝑘 hard thresholding, keeping 𝑘 largest entries

Probability

𝑝(x) probability density function
𝑝(x | y) conditional probability density function in x, given y
𝒩 (𝜇,Σ) (multivariate) Gaussian (normal) distribution 5.4

with mean 𝜇 and covariance matrix Σ

E expected value

Notation used in the interpolation tasks

xtrue ∈ R𝐿 original (non-degraded) signal
𝑀 set of indices of reliable (non-degraded) samples (entries)
𝑀 set of indices of missing (degraded) samples (entries),

𝑀 = {1, . . . , 𝐿} ∖𝑀

xobs observed (non-degraded) part of the signal xtrue = xtrue(𝑀)
𝛤 set of feasible interpolated signals, 𝛤 = {x ∈ R𝐿 | x(𝑀) = xobs} (2.1)
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A Practical remarks on methods based on
low-rank representations

This appendix comments on a few practical details encountered in the implemen-
tation of the algorithms derived in chapter 5. The discussed technicalities did not
appear in the published article [8].

A.1 Ensuring conjugate symmetry of the spectra
If the transforms L and T = L* correspond to the DFT and its inverse, respectively,
and the audio signal is real, we should ensure conjugate symmetry of the spectrum
c𝑛 in each temporal frame 𝑛. Otherwise, we cannot guarantee that the solution
of the interpolation problem is a real signal. This means we need to relax the
independence in assumption 5.3, since the values of the (real, non-negative) matrix
V = WH need to be symmetric in the frequency direction.

Note that the conjugate symmetry of the spectra in the context of NMF is
mentioned in the work by Bilen et al. [115, Sec. III.E]. There, it is proposed to enforce
symmetry by updating the matrix W, similarly to enforcing signal constraints as
mentioned in remark 5.6. A less detailed discussion is also present in [116, Sec. III.D],
whereas [117, Sec. III] proposes both complex and real formulations of a problem
related to NMF.

Without modifying the model and the whole derivation, we can rely on the fact
that a frequency-symmetric initialization of the matrix W results in real temporal
solution, which can be demonstrated as follows.

1. First, consider ĉ𝑛 defined by (5.14a) and ĉalt
𝑛 from equation (5.25). If D𝑛 =

diag ([𝑣𝑓𝑛]𝑓=1,...,𝐹 ) with V = [𝑣𝑓𝑛] = WH is a diagonal matrix with its (real,
non-negative) diagonal displaying the desired symmetry, which can be ensured
by the initialization, we can show that:
(a) TD𝑛T* is a real matrix. Denote T = [t1, . . . , t𝐹 ], where t1, . . . , t𝐹 are

column vectors which are either real or t𝑓1 is complex conjugate to t𝑓2

for some 𝑓1, 𝑓2 ∈ {1, . . . , 𝐹}. We shall denote this complex conjugacy
as t𝑓1 = t𝑓2 , meaning that the vectors are entrywise complex conjugate.
With this notation, we have

TD𝑛T* =
𝐹∑︁

𝑓=1
𝑣𝑓𝑛t𝑓t*

𝑓 . (A.1)

Since for each matrix t𝑓1t*
𝑓1 , there is a complex conjugate matrix t𝑓2t*

𝑓2

present in the sum, the whole sum is real.
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(b) It directly follows that M𝑛TD𝑛T*M⊤
𝑛 is real matrix, thus the inverse(︁

M𝑛TD𝑛T*M⊤
𝑛

)︁−1
is also real and

(︁
M𝑛TD𝑛T*M⊤

𝑛

)︁−1
xobs

𝑛 is a real vec-
tor.

(c) Now multiplication with M⊤
𝑛 realizes the imputation of zeros in places

of the missing samples, and T* = L is the DFT, thus the frequency
coefficients T*M⊤

𝑛

(︁
M𝑛TD𝑛T*M⊤

𝑛

)︁−1
xobs

𝑛 are conjugate symmetric, as
desired.

(d) Finally, the multiplication with D𝑛 does not break the symmetry, since
the diagonal itself is symmetric.

(e) In case of ĉalt
𝑛 in EM-t, the multiplication with LT only realizes inverse

DFT (creating a real signal), followed by DFT, which again results in
a conjugate symmetric coefficients.

2. Now focus on Σ̂𝑛. Clearly this is a Hermitian matrix, thus its diagonal is real,
and we only need the diagonal in subsequent computations of both EM-tf and
EM-t. We need to ensure that it is also symmetric:
(a) It holds

Σ̂𝑛 = D𝑛 −D𝑛T*M⊤
𝑛

(︁
M𝑛TD𝑛T*M⊤

𝑛

)︁−1
M𝑛TD𝑛 (A.2)

= D𝑛 −

⎡⎢⎢⎢⎣
𝑣1𝑛t*

1
...

𝑣𝐹 𝑛t*
𝐹

⎤⎥⎥⎥⎦ M⊤
𝑛

(︁
M𝑛TD𝑛T*M⊤

𝑛

)︁−1
M𝑛

[︁
𝑣1𝑛t1 . . . 𝑣𝐹 𝑛t𝐹

]︁
,

(A.3)

which leads to the expression for the diagonal entries

Σ̂𝑛(𝑓, 𝑓) = 𝑣𝑓𝑛 − (𝑣𝑓𝑛t*
𝑓 )M⊤

𝑛

(︁
M𝑛TD𝑛T*M⊤

𝑛

)︁−1
M𝑛(𝑣𝑓𝑛t𝑓 ). (A.4)

(b) For a pair 𝑓1, 𝑓2 such that t𝑓1 = t𝑓2 and 𝑣𝑓2𝑛 = 𝑣𝑓1𝑛, it holds

Σ̂𝑛(𝑓2, 𝑓2) = 𝑣𝑓2𝑛 − (𝑣𝑓2𝑛t*
𝑓2)M⊤

𝑛

(︁
M𝑛TD𝑛T*M⊤

𝑛

)︁−1
M𝑛(𝑣𝑓2𝑛t𝑓2) (A.5)

= 𝑣𝑓1𝑛 − (𝑣𝑓1𝑛t⊤
𝑓1)M⊤

𝑛

(︁
M𝑛TD𝑛T*M⊤

𝑛

)︁−1
M𝑛(𝑣𝑓1𝑛t𝑓1) (A.6)

= Σ̂𝑛(𝑓1, 𝑓1) = Σ̂𝑛(𝑓1, 𝑓1), (A.7)

since the diagonal is real.
3. It remains to show that the multiplicative update of W does not break its

symmetry in frequency direction. This is straightforward since this property
is kept by entrywise operations and also by multiplication with a matrix from
the right-hand side.
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A.2 Implementing the multiplicative updates
As mentioned in remark 1.26, division by zero can be avoided by introducing a minor
offset in the Itakura–Saito divergence.

In the alternating minimization approach, this can be back-tracked to a relaxed
problem where it is assumed (compare to (5.3))

ctrue
𝑛 ∼ 𝒩 (0, D𝑛 + 𝜀I) , D𝑛 = diag ([𝑣𝑓𝑛]𝑓=1,...,𝐹 ) . (A.8)

Consider now the approach of section 5.3 and the AM algorithm. Taking into
account the equation for the objective function (5.31), this results in maximizing

𝑝 (x𝑛 |W, H) = det (πT(D𝑛 + 𝜀I)T*)−1 exp
(︁
−(x𝑛)⊤ (T(D𝑛 + 𝜀I)T*)−1 x𝑛

)︁
,

(A.9)
which is further equivalent to minimizing the objective

− log 𝑝 (x𝑛 |W, H) = log det (πT(D𝑛 + 𝜀I)T*) + (x𝑛)⊤ (T(D𝑛 + 𝜀I)T*)−1 x𝑛.

(A.10)
It means that the term (D𝑛 + 𝜀I) should replace D𝑛 also in the signal update in the
AM algorithm.

We arrive at a similar result while developing the EM-tf and EM-t algorithms
from the assumption in equation (A.8). The term (D𝑛 + 𝜀I) appears in the whole
derivation instead of D𝑛. The change projects itself also in the multiplicative updates
of W and H, as desired. The resulting objective function for this case reads

𝑝
(︁
xobs

𝑛 |W, H
)︁

= det
(︁
πM𝑛T(D𝑛 + 𝜀I)T*M⊤

𝑛

)︁−1

· exp
(︁
−(xobs

𝑛 )⊤(M𝑛T(D𝑛 + 𝜀I)T*M⊤
𝑛 )−1xobs

𝑛

)︁
, (A.11)

or, in the negative logarithmic form,

− log 𝑝
(︁
xobs

𝑛 |W, H
)︁

= log det
(︁
πM𝑛T(D𝑛 + 𝜀I)T*M⊤

𝑛

)︁
+ (xobs

𝑛 )⊤
(︁
M𝑛T(D𝑛 + 𝜀I)T*M⊤

𝑛

)︁−1
xobs

𝑛 . (A.12)
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B Implementation
The research described in this thesis has been realized using the Matlab software.
The implementation of the algorithms developed in chapters 4 and 5 is available
through the following links, related to the respective publications:

• Introducing SPAIN (SParse Audio INpainter) [6]:
https://www.utko.fekt.vut.cz/~rajmic/software/SPAIN.zip

• Audio Inpainting: Revisited and Reweighted [4]:
https://github.com/ondrejmokry/InpaintingRevisited

• Algorithms for audio inpainting based on probabilistic nonnegative matrix
factorization [8]:
https://github.com/ondrejmokry/InpaintingNMF

Regarding the gap generation procedure, the aforementioned source codes may
contain minor inconsistencies (gap lengths, randomized positions etc.). For this
reason, a repository with pre-generated degraded signals is available at https://
github.com/ondrejmokry/TestSignals for future use.
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C Complete results from the state-of-the-
art study

In this appendix, figures C.1, C.3 and C.4 show the evaluation of the interpolation
algorithms per each signal of the dataset individually, i.e., the data that generated
the mean values plotted in figure 6.8.
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Fig. C.1: State-of-the-art comparison – complete SDR values. Note that the vertical
axis is adjusted to the data in the individual plots.
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The SDR values in figure C.1 reveal several appealing facts. For example, the
lead of the AR-based methods for gaps above 50 ms (especially modified Janssen,
Etter) appears to come not only from the sparse signals (clarinet, glockenspiel,
celesta), but also from the guitar sample. On the other hand, the NMF-based
methods dominate in case of some of the polyphonic instruments (harp, piano) and
the complex recording (wind ensemble).

A noticeable outlier is the results of A-SPAIN and A-SPAIN-LEARNED in the
case of glockenspiel and gap length 20 ms. This particular case appears to be affected
by the fact that one of the gaps ends in the middle of an onset, as seen in figure C.2.
The offset is than excessively represented in the interpolated gap. For a slightly
longer gap, this onset is lost completely, thus it does not have any negative effect
on the interpolation.
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Fig. C.2: Example of a problematic interpolation using A-SPAIN. The signal under
test is a35_glockenspiel, and the focus is on a single gap position which caused
counter-intuitive results. As in figure 6.9, the gray area represents the sample
dropout..

Regarding the psychoacoustically motivated metrics, PEMO-Q mostly aligns
with the results in terms of SDR, see figure C.3. The mean values in figure 6.8
indicate the largest difference between SDR and ODG in the case of iteratively
weighted ℓ1 relaxation and A-SPAIN. Figure C.3 confirms that these differences are
observed consistently in the whole dataset.

The ODG values computed using PEAQ in figure C.4 indicate that this algorithm
is not very sensitive to the differences in the interpolated audio. A notable exception
is the piano recording, for which the interpolation algorithms scored across the whole
range of ODG. For the rest of the signals, PEAQ did not indicate large differences
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between the algorithms for gap lengths below 60 ms, except for the interatively
weighted ℓ1 relaxation. However, with respect to the whole ODG scale, the observed
differences in terms of PEAQ are only minor.
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Fig. C.3: State-of-the-art comparison – complete ODG values via PEMO-Q.
Note that the vertical axis is cropped in case of a08_violin, a18_basoon and
a66_wind_ensemble_stravinsky
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Fig. C.4: State-of-the-art comparison – complete ODG values via PEAQ. Note that
the vertical axis covers the whole ODG scale only in the case of a60_piano_schubert.
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