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Abstract—We present a simple algorithm which accelerates
the sparsity-based audio inpainting. The algorithm optimally
restricts the signal support around the missing data region. This
way, increased computational efficiency is achieved by avoiding
inclusion of unnecessary values in the optimization process. For
testing purposes, we use the discrete Gabor transform as the
sparsity promoting representation, but the method can be easily
translated to other systems.

I. INTRODUCTION

In signal transmission or restoration applications, we are
often tasked with the restoration of lost samples. If inference
of this information from the rest of the signal is attempted, then
the restoration process is referred to as audio inpainting. Al-
though the distribution of missing samples could be general, in
practice we mostly meet situations when a compact, connected
part of the signal is missing (or corrupted so severely that it
must be deleted, see for example [1]). The missing segment
will be referred to as the gap.

Traditional approaches (see [2] and references therein) start
from the observation that the signal can be usually locally
modelled by an autoregressive (AR) process. Alternatively,
the signal is decomposed into sinusoidal components which
are individually interpolated into the interior of the gap. The
behaviour of the sinusoidal components can be parametrized
by an AR process, which allows inpainting sounds with
tremolo or vibrato [3], [4]. This approach is successful for
even very long gaps, but naturally holds only for gaps with
a clear and stable harmonic structure around. Another class
of methods, inspired by image inpainting, is exemplar-based,
i.e. the signal is scanned for a segment resembling the part
around the gap. The segment is then used to restore the missing
information [5].

Yet another approach, which we investigate in this con-
tribution, is based on sparsity [6]; it is assumed that an
audio signal can be (approximately) represented by a relatively
few coefficients in a properly chosen synthesis dictionary.
Time-frequency (TF) representations like MDCT, STFT, Gabor
transforms or constant-Q transforms are the dictionaries which
have this property [7], [8], [9].

The idea behind the sparsity-based methods is to estimate
the sparse coefficients of a signal from the reliable samples to
recover the missing samples. Formally, we wish to solve the
following optimization problem:

x̂ = argmin
x

‖x‖0 subject to ‖yr −Drx‖2 ≤ δ. (1)

Finally, the solution x̂ is simply used as the synthesis coeffi-
cients for recovery. Here, ‖x‖0 counts the nonzero elements
of x, yr represents the reliable samples of signal y, Dr is
the corresponding part of the full dictionary D, and δ is an
allowed model error. See Fig. 1.

Fig. 1. Illustration of synthesis modelling of the signal as y = Dx, and its
reliable samples, the subset yr = Drx, respectively.

The problem above is NP-hard. Therefore, alternative algo-
rithms have been proposed, providing approximate solutions.
Examples include greedy algorithms [10], [11] or methods
based on convex relaxation [12], [13], [14].

Sparse regression, although reasonably efficient, takes a
substantial amount of time. The works referenced above in-
troduce new concepts, and their software (if available at all)
serves as a proof of this concept, which is why the length of
signal around the gap is not considered an issue, or they use
a simple overlap-add segmented approach. The manuscript at
hand aims at accelerating the computation by a simple form
of preprocessing.

A. Basic idea

We argue that, in relation to (1), only a small time-
frequency region in the neighborhood of the gap contains infor-
mation relevant for the inpainting process, and we demonstrate
how to select the minimal region extending around the gap
such that the goal is achieved. This way, (1) alters to a new
optimization problem

x̂R = argmin
xR

‖xR‖0 subject to ‖yr
R −Dr

RxR‖2 ≤ δR. (2)

involving restricted versions of the signal yr
R, dictionary Dr

R,
and coefficients xR.
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Time-frequency transforms are constructed from one or
more time- and frequency-localized windows and their trans-
lations. Our algorithm takes advantage of the fact that the
optimization (1) searches for sparse coefficients for a “long”
yr, while only few coefficients contribute to the gap being
recovered. Indeed, in the final synthesis ŷ = Dx̂, only atoms
with nonzero overlap with the gap are relevant.

Although our idea holds also for any TF system with com-
pactly supported windows, we demonstrate our method using
the discrete Gabor transform (DGT) [15], [16]. The DGT of
finite-length signals is usually considered a periodic transform,
i.e. there are atoms supported at both ends of the signal at the
same time, see Fig. 2. Such windows, while necessary, carry
useless information and they should be ignored.

In order to minimize computational effort, we propose to
compute the DGT from a restricted signal with as few samples
around the gap as possible, while at the same time obtaining
identical TF coefficients in the relevant segment, illustrated in
Fig. 2.

Notice that saying this virtually corresponds to the analysis
sparse modelling [6], [17], [18], in contrast to the synthesis
model (1). However, since we use tight frames, in particular
tight Gabor frames (see below), the supports of the analysis
and synthesis windows are identical, and this allows us to
seamlessly use our restriction algorithm in both fomulations,
and to switch between DGT analysis and synthesis during the
following.

B. Setup and notation

Vectors are indexed starting from one. For simplicity, we
assume only a single gap in the signal, which is surrounded by
a sufficient number of signal samples. We denote the length
of y, the original, corrupted signal, by L.

Various implementations of the DGT are available; we
use the LTFAT Matlab/Octave toolbox [19], [20], [21], which
utilizes the following definition. The DGT of a signal y of
length L is a set of TF coefficients computed as

xm,n =

L∑
k=1

yk e
−j2πm−1

M (k−1) g((k−1−(n−1)a) mod L)+1 (3)

for n = 1, . . . , L/a and m = 1, . . . ,M . Here, g is the window,
usually assumed to be real and symmetric with a good TF
concentration [22] and a,M ∈ N are the time shift and number
of uniformly distributed frequency channels, respectively. The
set of vectors

{
ej2π

m−1
M (k−1) g((k−1−(n−1)a) mod L)+1

}
might

form a frame for CL, when proper g, a,M are chosen [15],
[16]. If this frame is even tight, which will be also our case,
these vectors comprise the columns of matrix D.

Notice that the DGT is computed such that effectively the
signal is periodic. This is the reason why the signal length
L should be a multiple of shift a — otherwise, the windows
would not be uniformly spaced. Similarly, L is usually required
to be a multiple of M — otherwise, a phase discontinuity
would appear at the boundary. Therefore, the processed signal
is usually padded with zeros to a new length, divisible by both
a and M . Notice that the possible phase jump is actually not
an issue in our case, since the boundary windows are never

used to recover the signal in the gap, and this is the reason
why divisibility by M could be ignored.

In the following, the symbol w will be used to represent
the effective length of the window, i.e. the length of its support.
First of all, we assume w � L, whereby w can be both even or
odd. We regard

⌊
w
2

⌋
+1 as the “central” index of the window,

the support of which extends
⌊
w
2

⌋
entries to the left from the

central index, and
⌈
w
2

⌉
−1 entries to the right of it. If w is odd,

the central entry lies indeed in the center of the window; for
w even this entry is right-biased by one sample. The window
shift a = 0 producing the first set of DGT coefficients (in
the following informally referred to as “the first window”) is
placed in a way that its central entry is at position 1. This
window thus ends at signal index

⌈
w
2

⌉
. Generally, a window

numbered n+ 1 has its central entry at index 1 + na, its first
entry at index 1 + na−

⌊
w
2

⌋
, and its last entry at index na+⌈

w
2

⌉
. Of course, all these values are considered in L-modular

arithmetics due to the periodicity.

The symbols s and f denote the indices of start and the end
of the gap within the original signal, respectively. The indexes
q,Q correspond to the first and the last index, respectively,
of the desired shorter signal within the original signal. The
indexes p, P similarly denote the central indices of the first/last
window having nonempty overlap with the gap. The numbers
S = (p − 1)/a + 1 and F = (P − 1)/a + 1 reflect the order
(or, translation number) of these two windows within the DGT
of the original signal. The symbols u, v, U, V have analogous
meaning to s, f, S, F , but related to the shortened signal. Fig. 2
presents the symbols at hand.

II. DERIVATION OF ALGORITHM

It is clear that the presented quantities are related to each
other via the parameter a, such that for particular k, l,m ∈ N
it holds p = q + ka, P = q + la, and Q = q +ma. We can
derive the complete algorithm step-by-step thanks to this basic
observation.

Find the central index p of the first window (from left)
such that it overlaps with the gap. Since the central index
of the first window is placed at 1, we can treat this problem
by virtually shifting the window by a repeatedly, until its
rightmost index overlaps with the gap. This means that we
seek k as low as possible, such that

p+
⌈w
2

⌉
− 1 ≥ s ⇔ 1 + ka+

⌈w
2

⌉
− 1 ≥ s,

which means k ≥
(
s−

⌈
w
2

⌉)
/a. Such a k is related to the

number of the window within the DGT, and it holds S =⌈(
s−

⌈
w
2

⌉)
/a
⌉
+1. Therefore, the desired p← 1+(S−1)a.

Find the first index of the restricted signal, q. In order to
ensure that the first useful window is not periodized in the
DGT (otherwise it would carry possibly wrong information),
q must not lie right of the leftmost index of the first useful
window. Formally, we seek k as low as possible, such that

q ≤ p−
⌊w
2

⌋
⇔ p− ka ≤ p−

⌊w
2

⌋
.

Therefore q ← p−
⌈⌊

w
2

⌋
/a
⌉
· a.
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Fig. 2. Illustration of the restriction algorithm: Original longer piece of signal (top) with the gap at positions s, f . Individual window shifts of the related
DGT are depicted schematically. Minimum-length excerpt of the signal (bottom). Only windows marked in red are relevant and will be used for data fitting and
regularization. Cyan windows are corrupted with circular information, but must be present due to the periodicity of the DGT. They are irrelevant for the recovery,
as are the black windows. The green window is completely contained in the gap and therefore does not carry any information. The plots above correspond to
selecting offset = 0, see Sec. 2. The bottom graph contains two-fold axis: the first axis refers to the original setup, while the values at the second one are
related to the new, shorter signal.

Find the central index P of the final window overlapping
with the gap. Starting from p, we look for the maximal shift
by a multiple of a, such that the window has nonzero overlap
with the gap. In other words, we seek the greatest k for which

P −
⌊w
2

⌋
≤ f ⇔ p+ ka−

⌊w
2

⌋
≤ f.

Such an optimal k is again connected to the number F of
the window within the original DGT, and it holds F = S +⌊
(f +

⌊
w
2

⌋
− p)/a

⌋
. Our P is then P ← p+ (F − S)a.

Find the last index of the restricted signal, Q. The index
Q is obtained in a similar fashion as q, i.e. the last useful
window must not be periodized in the transform. Since the
last window of the DGT coincides with the first one, it is not
the case that the central window entry should be placed at
index Q, rather the left neighbour of the central entry, i.e. we
have Q = P + ka − 1 for some k. This virtual last window
is marked by dots in Fig. 2. The rightmost entry of the last
useful window lies at index P +

⌈
w
2

⌉
− 1, which leads to

Q ≥ P +
⌈w
2

⌉
− 1 ⇔ P + ka− 1 ≥ P +

⌈w
2

⌉
− 1,

i.e. k ≥
⌈
w
2

⌉
/a. Therefore, Q← P +

⌈⌈
w
2

⌉
/a
⌉
· a.

Optionally, one can check the divisibility of the new signal
length, Q − q + 1, by a,M (the reason has been explained
above) and, in the negative case, one increases Q to fulfill this
requirement. If this new index Q would be Q > L, the signal
could be simply padded by zeros; note that this padding does
not affect the useful coefficients.

Now, restricting the signal to the range from q to Q
and computing the DGT results in the desired situation that

all useful coefficients from the original DGT and from the
restricted DGT coincide.

It could happen that q < 1 or Q > L, which means that
there is not enough signal samples even in the original signal to
compute the DGT. As long as at least p−

⌊
w
2

⌋
≥ 1 and P−1+⌈

w
2

⌉
≥ L, zero values can be used at those positions without

having any effect on the useful coefficients. There will be rare
cases when offset will help to satisfy the above inequalities,
however in the remaining cases, the DGT performed of the
signal around the gap will automatically introduce errors due
to the transform’s periodicity.

The position of the gap within the shortened signal can be
easily computed as u = s−q+1 and v = f−q+1. Similarly,
the order of the first and the last window (in the original signal
they are S and F ) are U = (p−q)/a+1 and V = U+(F−S)
for the shortened signal.

It may happen that the first or the last useful window of
the restricted DGT has too small or too large overlap with the
gap in relation to the signal recovery, see for example window
U in Fig. 2. We can shift all the transform to achieve a more
beneficial layout of the windows. In our algorithm, this is done
via choosing an offset parameter, which is by default set to
offset = 0. A nonzero offset clearly breaks the coefficients
coincidence (which is no harm in practice) and the meaning
of ordinals S and F gets lost. Notice that the overlaps of the
gap with the windows can be simply deduced before the actual
DGT is performed, and thus suitable offset can be decided
before the restricting algorithm is run.

The last item of the algorithm consists of computing vector
overlap, gathering information about the lengths of overlaps,
i.e. the number of samples which are shared by the gap and
the windows. We can restrict ourselves to the useful windows
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Algorithm (Finding the shortest restriction of the signal
around the gap).
Input: w, a,M, s, f (optionally offset ∈ [0, w − 1])
Output: q,Q, p, P, S, F, u, v, U, V

1) S ←
⌈(
s−

⌈
w
2

⌉)
/a
⌉
+ 1

2) p← 1 + (S − 1) · a
3) p← p+ offset
4) q ← p−

⌈⌊
w
2

⌋
/a
⌉
· a

5) F ← S +
⌊
(f +

⌊
w
2

⌋
− p)/a

⌋
6) P ← p+ (F − S) · a
7) Q← P +

⌈⌈
w
2

⌉
/a
⌉
· a

8) If aM - (Q− q + 1):
Q← Q+ a− [(Q− q + 1) mod lcm(a,M)]

9) u← s− q + 1, v ← f − q + 1
10) U ← (p− q)/a+ 1, V ← U + (F − S)
11) Determine the overlaps of the gap with individual

windows, overlap.

Fig. 3. The resultant algorithm.

only, since for the others this value is zero. Therefore, overlap
contains F − S + 1 values (for offset 6= 0, this number could
be different!). A simple trick can be used for generating the
vector: We construct an “indicator” signal of the restricted
length Q − q + 1, i.e. the signal that takes value one at all
indexes inside the gap (from u to v) and zero otherwise.
We then convolve it with the rectangular window (w ones).
Subsampling the convolution with factor a leads to a vector
carrying the desired values.

III. EXPERIMENTS AND SOFTWARE

The first simple experiment serves as a proof of concept
of the algorithm. We take a short excerpt from the ‘greasy’
speech signal [20], [21]. This piece is 1100 samples long at
16 kHz sampling rate. We consider a virtual gap, starting at
position 500, and 80 samples long. We compute the optimum
restriction using the Algorithm in Fig. 3, using Matlab function
min_sig_supp.m. The input values are w = 256 (Hann
window), a = 64, M = 64, s = 500, f = 580, offset = 0.
We receive output values q = 257, Q = 833, which means
that the signal can be shortened by ca 50 % with no effect on
the samples in the gap. We show the DGT spectrograms of
the original and the shortened signal in Fig. 4, produced by
show_coefs_coincide.m. From the total 18 vertical sets
of Gabor coefficients, sets S = 7 to F = 12 in the original
and U = 3 to V = 8 in the new coefficients coincide, which
is marked by dashed boxes. The other coefficients do not have
overlap with the intended gap. Actually, the overlaps with the
gap can be computed by overlap.m and they are, from left
to right: 13, 77, 81, 81, 68, 4 samples.

The Matlab files can be downloaded from URL
http://www.utko.feec.vutbr.cz/∼rajmic/software/accelerate
audio inpaint.zip, and they require LTFAT [21] to be installed.

Next, we performed an experiment showing the ability of
the algorithm to accelerate the inpainting process. First, the
original corrupted signal of length 64 000 samples (4 s) has
been inpainted. The gap size was 320 samples (20 ms). A
tight Gabor system based on Hann window with a = 683 and
M = w = 2049 was used. The sparse coefficients were com-
puted by `1-relaxation of (1) via Douglas-Rachford splitting

time shift

fr
e
q
u
e
n
c
y
 b

in

2 4 6 8 10 12 14 16 18

5

10

15

20

25

30

time shift

fr
e
q
u
e
n
c
y
 b

in

1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

30

Fig. 4. Spectrograms of the original (above) and the shortened signals,
respectively. They share the colormap and scale. Since the input signal is
real, just the non-negative frequency bins are shown. Moduli of the DGT
coefficients are displayed, nevertheless their phases are identical in the marked
region as well.

[23]. This took 16 s on an ordinary PC with Intel Core2 Quad
CPU @ 2.83 GHz. Then, the same gap was inpainted using the
optimally restricted signal, which was only 4782 samples long.
The optimization parameters has been tuned such that both
experiments resulted in the same SNR. This way, the sparse
regression took only 2 s. This experiment was performed using
our audio-inpainting toolbox.

IV. DISCUSSION AND OUTLOOK

It is now clear how we turn to minimizing ‖xR‖0 in (2)
instead of solving the original problem (1). In fact, we note
that sparsity of even the subset of xR should be minimized; it
is the central subset, denoted xRR, containing only the useful
DGT window positions:

x̂R = argmin
xRR

‖xRR‖0 subject to ‖yr
R −Dr

RxR‖2 ≤ δR. (4)

The remaining coefficients are not restricted since the periodic
processing corrupts the coefficients and possibly destroys their
sparse structure (compare coefficient strips adjacent to the rect-
angle borders in Fig. 4!). They do not influence the recovery
in the gap. This is however not to say that the minimizers of
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(1), (2) and (4) will be the same. The solutions are dependent
on the content of yr, on Dr, and on constants δ, δR, and one
can hardly hope for a simple relation between them, especially
when `1-relaxation is used.

Structured sparsity [17], [12], [14] has been evidenced to
be beneficial for audio inpainting. Here, not the individual
coefficients are sparse, but horizontal groups reflecting the
harmonic structure of a sound are formed, and treated as sparse
across groups. In such a case, our algorithm could be easily
modified to accommodate this approach.

The algorithm could be also adopted to the case of multiple
gaps or even more general layout of the missing samples. If
two missing sample segments are well enough separated, each
such gap can be treated individually. Actually, the proposed
algorithm can be safely used on the gaps separately when the
distance between the gaps’ borders is greater or equal than
the window size, w. In case when the distance is still at least
greater or equal to w − 1 − a the gaps could be separated if
a proper offset value is used. If pieces of missing samples
are not sufficiently separated, then a longer signal segment
can be cut using our algorithm, containing the full region
of nonseparated gaps. However, if the treated signal misses
entries whose distance is continuously below the limit, the
only possibility is to use a blockwise overlap-add mechanism,
like in [10].

A problem related to inpaiting is the so-called audio declip-
ping [11], [14], [24], [25]. This is actually a better-conditioned
problem than inpainting, since one has more prior information
about the signal being restored. Results of this article can
be seamlessly transferred to the sparsity-based declipping
task, while keeping in mind that the spacing between clipped
samples is usually low, which limits the use of the proposed
algorithm for declipping.
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