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Abstract—The paper focuses on the problem of image demo-
saicing using the deep image prior. The deep image prior (DIP)
is an uncommon concept that uses a generative neural network
which, however, utilizes only the degraded image as the input
for training. A novel method for image demosaicing is proposed,
based on DIP, and it is compared with common demosaicing
methods. In terms of the objective PSNR and SSIM values,
the proposed method proved to be comparable with a widely
used Malvar’s demosaicing method. Nevertheless, subjectively,
DIP produces demosaiced images comparable with the superior
Menon’s algorithm. Unfortunately, the proposed method turned
out to be computationally immensely challenging.

Index Terms—demosaicing, debayerization, color filter array,
deep image prior

I. INTRODUCTION

At present, most people own a mobile phone with a camera.
Virtually everyone can say they have taken a photo at least
once in their life. However, only few people understand how
a digital color photo is acquired. To put it briefly, a photo
comes into existence by light passing through the lens and
projecting onto a flat image sensor with a color filter. After
the image sensor has captured the different color components,
demosaicing must begin. Demosaicing is a process that is
usually built into the camera. It generates an image that can be
viewed after taking a photo. If demosaicing was not present,
the image would be obtained in the RAW format. A RAW
image contains only the unprocessed information captured by
the camera sensor.

The most common color filter used is the Bayer filter [1]. It
is a color filter array (CFA) designed in such a way that each
of the array cells allows solely the red, green, or blue (RGB)
light component to pass. A usual configuration of such a filter
can be seen in Fig. 1. It is made using a square pattern with
two green elements, one blue and one red element. This pattern
is then repeated to cover the whole sensor area. A commonly
used arrangement is RG–GB (Fig. 1), but arrangements such
as BG–GR, GR–BG, and GB–RG are also possible.

Naturally, a CFA can capture only one color value at each
component. Demosaicing can be used to obtain full RGB
values of each component. Therefore, demosaicing can be
understood as a process of estimating the missing color values
of a CFA. In other words, it is a special type of color
interpolation. Many different demosaicing methods exist. One
of the simplest and quickest methods is the bilinear interpo-
lation. Other, more effective methods include more complex
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Fig. 1. Schema of Bayer filter with RG–GB arrangement.

techniques such as Malvar’s [2] and Menon’s demosaicing
methods [3].

Malvar’s method uses the bilinear interpolation but corrects
its result using the value of the gradient multiplied by a gain
factor. The gradient is calculated using predefined filters
which are described in [2]. The gradient correction results
in sharper images. Additionally, it slightly reduces aliasing
artifacts originating due to using the bilinear interpolation.

Menon’s approach slightly differs from those mentioned
above. It uses a directional interpolation of the green pixels
along both horizontal and vertical directions and creates two
corresponding “green” images. Following the interpolation,
a choice is made between the two green images using two
classifiers [3]. Subsequently, the red and blue components
are interpolated. Besides information from the Bayer filter,
the obtained green image and the two classifiers help with
the reconstruction of these components. This results in more
accurately reconstructed color channels with significantly less
pronounced artifacts.

Deep neural networks (DNN) have also been exploited
in demosaicing. Klatzer et al. [4] created a DNN that was
able to learn its weights on the training image dataset such
that the network performed joint demosaicing and denoising.
Kurniawan et al. [5] utilizes the deep image prior (DIP)
concept [6] as the present paper does, but it does so for random
CFAs containing white elements in addition to RGB.

This paper focuses on an approach to demosaicing related
to [5], but using the DIP idea in a much more straightforward
way. We adopt the DIP network to solve the image demo-
saicing problem for its use with standard RGB CFA arrays,
and perform comparisons of the restoration quality against the
other standard methods.

II. DEEP IMAGE PRIOR

The Deep image prior [6] is a concept used for the re-
construction of degraded images. It restores the images using
a generative convolutional neural network (CNN). The main
difference from common reconstructive algorithms is that



DIP uses a network that is completely untrained. Given the
structure of the network, its only input information is an image
damaged or degraded in some way. The task of the network
is to recover the image as well as possible. All of the weights
of the network are randomly initialized. The weights of the
network, serving as a parameterization of an image, are trained
such that the network learns a conversion of a completely
random initial image into the degraded image provided. The
size of the network is usually great enough to allow such an
unusual transformation after a sufficient number of learning
epochs. The key observation of [6] is that along that learning
path, a restored image appears. It is only necessary to stop
learning at the right point. This way, DIP proves that the
architecture of the neural network fundamentally influences
the results (and needs to be taken into consideration in the
future of deep learning). The DIP applied to image processing
tasks typically utilizes the U-net-like “hourglass” architecture,
also called encoder–decoder with skip connections.

Several applications of this neural network are described
in [6]. These applications include denoising, super-resolution,
inpainting, image enhancement, removal of JPEG-compressed
artifacts. In some applications, the visual quality of the re-
stored images is comparable with the state-of-the-art methods,
which are trained in most cases. The downside of this concept
is that the optimization process is very slow, compared with
the other networks which—once learned—are fast.

A deep neural network used for image generation can be
considered a parametric function x = fθ(z) that maps a code
vector z to an image x. In the case of DIP, the code vector z
is randomly initialized but fixed in the course of the learning
epochs. The parameter θ incorporates all the weights and
biases present in the network.

Reconstruction tasks can be formulated as energy minimiza-
tion problems:

x∗ = min
x

E(x;x0) +R(x), (1)

where E(x;x0) is the data term that is chosen according to
the required application, x0 represents the damaged image
and R(x) is an explicit regularizer. The regularizer is not tied
to particular applications; commonly it characterizes naturally
looking images. But in the case of DIP, R is replaced by an
implicit prior captured by the neural network itself:

θ∗ = argmin
θ

E(fθ(z);x0), (2)

where the minimizer θ∗ can be found using standard opti-
mization techniques. Once θ∗ is obtained, the final recovered
image can be reconstructed by the application of the network
to the initial code, i.e. x∗ = fθ∗(z). As already mentioned,
the ability of the network to (over)fit and thus result in the
corrupted image itself (i.e. x0 = x∗) requires stopping the
training process after a proper number of epochs [6].

III. METHOD

As mentioned above, one of the applications of DIP in
[6] is inpainting. Inpainting is a process where damaged or

missing portions of a digital image are repaired (repainted).
The authors of [6] propose the following approach to solve this
problem. Let x0 be the depleted image of size H × W , and
m ∈ {0, 1}H×W the binary mask indicating missing pixels.
Then the image can be restored using the following data term
(after parameterization of the network):

E(fθ(z);x0) = ∥(fθ(z)− x0)⊙m∥2, (3)

where ⊙ is the Hadamard product. The inclusion of the data
prior is crucial, given that the energy (data) term alone would
not be sufficient to spread information about the color values
to the missing sections. If the data prior was not present, the
resulting image would simply not change after optimization
over pixel values x. Again, DIP uses an implicit data prior that
is given by the optimization of (3) with respect to parameters θ.

In this paper, an approach similar to inpainting is proposed
for demosaicing. Instead of the binary mask that takes on
the values 0 or 1, a Bayer mask involving RGB channels is
used. This paper works with an RG–GB Bayer mask but other
combinations would result only in the change of the mask. If
the binary mask m is replaced by a Bayer mask MCFA, the
data term for demosaicing becomes

E(fθ(z);x0) = ∥(fθ(z)− x0)⊙MCFA∥2. (4)

Again, the data prior is present through the optimization of
a data term similar to (3).

IV. EXPERIMENTS AND RESULTS

A. Data set

All 24 images from the traditional Kodak image data set [7]
were used in the experiments. The size of these images was
768×512 or 512×768, depending on the image orientation.
The images come in the uncompressed PNG-24 file format
with 8 bits per channel.

B. Artificial mosaicing

Real “RAW” images, in practice acquired by the camera
sensor, had to be simulated. Therefore, an artificial bayeriza-
tion, or mosaicing, was performed on the Kodak images. An
RG–GB Bayer mask was used to create R, G, B undersampled
images.

C. Parameters of the neural network

An encoder–decoder architecture similar to the U-net [8]
with five downsampling and five upsampling convolutional
layers was chosen for the demosaicing method. Even though
skip connections led to a faster optimization, they also brought
undesirable artifacts, at least with the parameter settings used
in the experiments. The learning rate used was 0.001 and
the network weights were randomly initialized with Gaussian
noise. The counts of feature maps in both the upsampling
and downsampling convolution layers were as follows: 64, 64,
128, 256, and 512. Compared with the inpainting experiment
presented in [6], the number of feature maps was the most
distinctive setting of the proposed network. The feature maps
were obtained by a 3×3 convolution with zero padding,



followed by a LeakyReLU activation function. The Adam
optimizer [9] was used as the optimization algorithm. The
number of epochs was chosen to be 2000 since the highest
PSNR values most frequently appeared around 2000 epochs.
Also, the maximum SSIM values were observed close to 2000
epochs.

D. Evaluation

The proposed demosaicing method was compared with
the bilinear interpolation, to Malvar’s and Menon’s methods,
and to the demosaic function in Matlab (very similar to
Malvar’s demosaicing method). As the objective scores for
the comparison, the peak signal-to-noise ratio (PSNR) and the
structural similarity index measure (SSIM) [10] were used. It
is worth noting that the higher the PSNR value, the better. The
maximal SSIM value is 1. The PSNR and SSIM values were
obtained using the scikit-image [11] Python package.

It is worth noting that the classic demosaicing methods
mentioned above are purely deterministic, while randomness
of several kinds affects the output of the DIP-based method:
First, the code vector z is newly generated each time the
optimization is run. Second, the network is initialized with
random weights θ, meaning that every time the program runs,
a different local minimum of the loss function can be found.
Finally, the optimization algorithm utilizes the stochastic gra-
dient descent [9], which may also lead to a perturbation in the
final solution. As a consequence, the proposed method is not
perfectly stable in terms of the PSNR/SSIM over multiple runs,
since the results vary for each run of the program. However,
the variation is not severe: Across the test images, the PSNR
values of individual program runs differ by ±0.3 on average.
As for the SSIM values, the variation is negligible (±0.002).

E. Findings

1) Comparison of PSNR and SSIM values: The proposed
method proved to be on a par with the demosaic function
in Matlab and close to Malvar’s democaicing method, with an
average PSNR of 33.7 dB and an average SSIM of 0.967 (see
Table I). Furthermore, is was marginally better than bilinear
interpolation. Menon’s method proved to be the superior
method among all methods. A comparison of PSNR and SSIM
values can be seen in Fig. 2.

2) Subjective visual comparison: Visually, the proposed
method performs significantly better than any other method
except for Menon’s demosaicing. Most images demosaiced
by the proposed method are indistinguishable from those
produced by Menon’s method. A visual difference reveals
itself rarely, for example, in the case of the image no. 19, which
is shown in Fig. 3. No formal subjective test was performed
to prove these impressions statistically, however.

3) Additional improvements: The value of the objective
criteria typically slightly oscillates in the course of training
epochs. Thus, the proposed method can be improved by aver-
aging the images from the last few epochs. This improvement
comes basically with no additional cost. In terms of the
number of images averaged, 50 images proved to be a sensible
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Fig. 2. A scatter plot of the PSNR and SSIM values of all images and
methods. The vertical axis represents the SSIM values while the PSNR values
are displayed horizontally.

choice with regard to objective quality. Averaging more than
50 images did not bring any significant improvement, doing
so only (very slightly) increases the time of execution. The
described development results in a PSNR improvement of
0.4 dB on average. The SSIM improves slightly too; however,
the improvement is negligible (0.0019).

TABLE I
TOP BLOCK: AVERAGED RESULTS OF TRADITIONAL METHODS. BOTTOM

BLOCK: AVERAGED RESULTS OF 10 RUNS OF THE PROPOSED ALGORITHM
ON THE IMAGES FROM THE KODAK DATA SET.

PSNR [dB] SSIM [-]
Bilinear interpolation 29.1635 0.93098
Malvar’s method 35.1601 0.98111
Menon’s method 39.0132 0.99049
Matlab demosaic function 34.6454 0.96777
Value at 2000 epochs 33.7053 0.96685
Oracle (without averaging) 34.0019 0.96821
Oracle (with averaging) 34.1320 0.96875
Images 1999 & 2000 averaged 34.0039 0.96797
Images 1900 & 1901 averaged 34.0095 0.96780
Best run (without averaging) 33.9096 0.96845
Best run (with averaging) 34.3156 0.97022
Images 1991–2000 averaged 34.0862 0.96841
Images 1981–2000 averaged 34.0987 0.96849
Images 1971–2000 averaged 34.1064 0.96856
Images 1961–2000 averaged 34.1133 0.96861
Images 1951–2000 averaged 34.1177 0.96863
Images 1901–2000 averaged 34.1226 0.96861

4) Downsides: The crucial downside of the proposed
method and the Deep Image Prior as a whole is that it is
extremely computationally demanding compared with other
methods. Averaged over all test images, the execution time of
classic demosaicing methods is below one second, with the
fastest being the bilinear interpolation at around 0.4 seconds.
The proposed method takes, around 90 seconds on average.
Unlike with the other methods, the time is heavily dependent
on the computer hardware. The shortest reconstruction times
are obtained when a GPU is utilized. Our results were acquired
using the NVIDIA Tesla V100S PCIe 32 GB graphics card.
It is important to consider that the times presented hold for



Fig. 3. Visual comparison of all methods on the fence from the Kodak image no. 19 – the colored stripes on the images represent color artifacts mentioned
in the text. a) the ground truth; b) bilinear interpolation; c) Malvar’s method; d) Menon’s method; e) Matlab demosaic; f) the proposed method.

768×512 images, which are relatively small in the context
of today’s cameras. Larger images would require even more
computation time.

5) Surprises: To show the maximal capabilities of the
proposed method, an oracle approach was selected. In this
case, the oracle approach means that the data is treated as if
the ground truth image was known. As a result, the images
with the maximum PSNR/SSIM value could be selected; in
our case, the best image (in terms of PSNR/SSIM) from
epochs 1900–2000 was chosen. The greatest surprise came
with averaging the last few images. Averaging only the last two
images proved to be on a par with the oracle approach, at least
in terms of PSNR. Taking it even further, averaging the last 10
images came with better results than the oracle approach. The
comparison of PSNR and SSIM values of different numbers
of averaged images and other noteworthy statistics can be seen
in Table I.

V. CONCLUSION

The paper proposed a demosaicing method based on
the DIP concept. In terms of PSNR and SSIM values,
it delivered results very similar to those of the clas-
sic Malvar’s method. Visually, DIP did not surpass only
Menon’s method, whose results are comparable with DIP.
The most surprising fact was that averaging the last few
images of the optimization process brought very solid re-
sults, even when compared with the oracle approach. The
resulting images from the Kodak data set are available at
https://github.com/sedemto/results_dip. It is
worth mentioning that even though DIP has shown very good
visual results, it cannot be used in practice due to the fact that
it is very computationally demanding.

Future development could involve the inclusion of an addi-
tional regularization of the network to tackle aliasing artifacts
even more strongly. Also, the joint processing of the RGB
channels by the DNN could be revised. Finally, in difference
to most of other methods, the DIP-based demosaicing could
be straightforwardly adapted to the case of a random CFA,
where aliasing issues are automatically restrained.
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