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ABSTRACT

In quantitative perfusion MRI, reliable estimation of tissue
perfusion parameters remains a challenging task. Recently,
the simultaneous DCE-DSC-MRI technique has attracted
attention since it leads to more reliable estimates of perfusion-
parameter maps than DCE- or DSC-MRI alone. In this paper,
we propose a method of simultaneous DCE-DSC-MRI based
on spatio-temporal locally low-rank regularization of the
DCE and DSC image sequences. By comparison with the
baseline DCE-DSC-MRI method, we demonstrate improved
accuracy of the perfusion-parameter maps. The evaluations
are performed on a realistic synthetic phantom of a rat head
with several noise levels.

Index Terms— Magnetic resonance imaging; quantitative
perfusion analysis; DCE; DSC; low rank; regularization

1. INTRODUCTION

Magnetic resonance imaging (MRI) is currently more and
more used for measurement than only as an imaging device.
Next to anatomic images, it can measure physical quantities
characterizing tissue function. Perfusion MRI is an impor-
tant group of such measurement methods used for diagnosis
and therapy monitoring, especially in oncology [1], as well
as in preclinical (small-animal) MRI in the development of
new treatment strategies [2]. It provides assessment of the
perfusion status of a tissue on the capillary level.

Dynamic Contrast-Enhanced (DCE) MRI and Dynamic
Susceptibility-Contrast (DSC) MRI are the most widely used
perfusion MRI techniques in oncology. They are based on in-
travenous administration of a contrast agent (CA) and acqui-
sition of T1-weighted (DCE) or T2(*)-weighted (DSC) im-
age sequence capturing the temporal and spatial distribution
of the CA upon its administration. While DCE-MRI is mostly
used for the quantification of vessel-wall permeability, DSC-
MRI is more suitable for the assessment of blood flow. DCE
and DSC data can be acquired simultaneously, using multi-
gradient-echo (MGE) acquisition, which captures a set of im-
ages with multiple echo times (TEs) for every time instant
[3, 4]. The processing of such DCE and DSC data and the

complementary advantages of both techniques can be em-
ployed to yield more accurate perfusion-parameter estimates
than with DCE- or DSC-MRI alone [5, 6, 7].

The first part of simultaneous DCE-DSC-MRI processing
is the extraction of the DCE and DSC components from the
MGE dataset. The accuracy and precision of this step are
crucial for the reliability of the following steps, which consist
of fitting the pharmacokinetic and gradient-correction models
simultaneously to these DCE and DSC components.

The extraction of DCE and DSC components from MGE
data (weighted by both T1 and T2*) is formulated as a separa-
tion of the T1 (DCE component) and T2* (DSC component)
effects of the CA on the imaged tissue. This is done indepen-
dently for every voxel and time instant by estimating the DCE
component as a T1-weighted image intensity with eliminated
T2* effect and the DSC component as T2*. This corresponds
to fitting an exponential function to image-intensity versus TE
curves. In previous work combining DCE- and DSC-MRI,
this exponential-function fitting has always been done inde-
pendently for each voxel and time instant [3, 4, 8, 5, 6, 7]. In
this work, we propose a new approach by including spatio-
temporal regularization to achieve more reliable results. We
employ low-rank regularization known, for example, in im-
age reconstruction [9, 10, 11, 12] but not in the context of
extraction of DCE and DSC components from MGE data for
simultaneous DCE-DSC-MRI. We evaluate our method on
the whole DCE-DSC-MRI processing chain applied to real-
istically simulated data and quantify the improvement on the
final perfusion-parameter maps.

2. DCE-DSC-MRI ACQUISITION AND ESTIMATION

For simultaneous DCE-DSC-MRI acquisition, the standard
MGE method is assumed, as used in [3, 4, 13]. It is based on
multi-TE (i.e., acquiring images for multiple TEs) spoiled-
gradient-echo acquisition with Cartesian sampling of the
k-space. The MGE acquisition is repeated to capture a dy-
namic multi-TE image sequence (several minutes long with
the temporal resolution in units of seconds). The acquired
k-space data are reconstructed using the inverse FFT. Subse-
quently, assuming a multi-element receiving coil, the sensi-



tivity maps are estimated [14], employed in the reconstruction
of Xk, and the magnitude images are used as the input to the
procedure extracting the DCE and DSC components.

In the following, the magnitude data will be denoted |Xk|,
where k is the index of TE. Each of the data |Xk| is actually
a three-way tensor of size Nx ×Ny ×Nt, with Nx and Ny be-
ing the image size (we assume imaging a single slice) and Nt
represents the number of time-domain frames in the acquired
image sequence. In the extraction of the DCE and DSC com-
ponents, the DCE component is the T1-weighted image se-
quence with eliminated T2* effect (i.e., an image sequence
that would be acquired for hypothetical TE = 0 s), denoted as
A further on. The DSC component corresponds to 1/T2∗,
substituted by B for simplicity. Both A and B are three-way
tensors of size Nx ×Ny ×Nt, the same as each |Xk|.

Estimation of A and B is formulated as a minimization of
the following optimization criterion
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The first summand of the functional is the data fitting term
that relates the observation with the parameters A and B. The
expression models the time series |Xk| as an exponential. The
mathematical operations are taken elementwise; the symbol
⊙ denotes an elementwise multiplication. Echo times of the
MGE acquisition are denoted as TEk. The norm ∥·∥F is the
Frobenius norm over the three-way tensor, an equivalent of
the Euclidean norm for vectors.

With this term alone, one could estimate the parameters A
and B using classic numerical techniques such as nonlinear
least squares [15]. This approach will actually serve as the
baseline in the comparison (with standard determination of
|Xk| combining magnitude images of the coil elements via
the sum of squares, i.e., no estimation of sensitivities). It is
a voxel-wise approach prone to noise-related inaccuracies.

We exploit the regularization of A and B to cope with
noise and to achieve more accurate estimates thereof. We start
from the observation that thanks to a typical tissue structure
in the scanned body, the parameters (i.e., elements of matrices
A,B) often do not change rapidly in space. Therefore, square
pixel blocks of a proper size behave as low-rank matrices, on
average. Likewise, in the time direction, values of neighbour-
ing pixels corresponding to the same tissues behave similarly,
i.e. they are likely to form a low-rank structure. This justifies
the regularization terms in (1), described next.

The operators Di
A indexed by i are the “blocking opera-

tors”, serving to split A into non-overlapping cube blocks of
identical size and forming a matrix by stacking the columns
of the cube (so-called Casorati matrix). The operators Dj

B
are used to split B in a similar fashion, but the size of the
blocks can be different than in the case of A. The norm ∥·∥∗

is the nuclear norm, which is the closest convex surrogate to
the rank of the matrix [16]. Different scales of A and B are
taken into account by the user-defined positive weights λA
and λB. The described blocking operators not only provide
the desired local low rank behaviour, but they also permit sig-
nificantly faster computing times than when the entire A and
B were assumed low rank.

The problem (1) can be shown not to be convex and thus
any numeric algorithm for solving the problem might provide
a local optimum only. We solve (1) using the proximal gra-
dient method, which can be understood as a generalization of
descent methods in the presence of non-smooth regularizers
[17]. The algorithm first moves the current estimates of A,B
in the direction of the negative gradient of the first term; here,
a line search is applied, in each variable separately. After
the gradient steps, the algorithm adjusts the current estimates
such that they form low-rank matrices; this is done using the
singular value thresholding [9, 18, 19]. These two principal
steps repeat iteratively. The algorithm can be stopped after
a finite number of iterations or it can terminate after a heuris-
tic convergence criterion is met. Note that in order to avoid
blocking artifacts in the reconstruction, the blocking operators
pseudo-randomly shift the blocks in the course of iterations.

3. EXPERIMENTS AND RESULTS

3.1. Pharmacokinetic phantom

Direct evaluation on real DCE-MRI data is not possible be-
cause of unknown ground truth. Instead, we evaluated the
method on realistic data simulated using our own simula-
tion software PerfSim. The software can generate simulated
preclinical DCE-DSC-MRI data and the corresponding pre-
contrast data (for the conversion of the DCE image sequence
to the CA concentration sequence, see below). The tissue
structure of the phantom (1024×1024 pixels) consists of ho-
mogeneous tissue regions segmented from a real DCE-MRI
dataset (axial slice, head) of a tumor-bearing rat (Fig. 1 left)
with the corresponding perfusion parameters assigned based
on the real DCE-MRI measurement and the literature. The
DCE and DSC components were generated using the Adi-
abatic Tissue Homogeneity (ATH) pharmacokinetic model
[20] and the gradient-correction model according to [4].

The MGE acquisition was simulated with the following
parameters: FA = 30°, TR = 15 ms, TE = {1, 3, 5, 7, 9, 11} ms.
Cartesian k-space data with matrix size 128×96 and 400 time
frames with a sampling period of 1.44 seconds were recon-
structed using the inverse FFT. The multi-FA pre-contrast
data was simulated with FA = {3, 5, 10, 15, 20, 25, 30} ° and
20 frames. Coil-element sensitivity maps of a surface 4-
channel rat head coil derived from a real DCE-MRI dataset
were used.

Five datasets with the above mentioned parameters were
generated, varying in the level of the Gaussian noise added
to the raw echo signals. The selected standard deviations
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Fig. 1. Structure of the phantom (left, colors identify different
tissues) with the tumor depicted in shades of gray and the
temporal muscle shown in cyan in the upper right part of the
phantom; ground truth maps of Fp [mL/min/mL] (middle);
ground truth maps of ve [mL/mL] (right).

(SDs) for the noise were 0.0001, 0.00025, 0.0005, 0.00075
and 0.001 (for comparison, we measured the noise level from
real recordings with a 9.4T MR scanner on a rat in the same
region as in our phantom with acquisition parameters men-
tioned above, but with a dedicated 8-channel surface coil,
and obtained SD=0.0001; hence we simulated worse scenar-
ios with e.g. lower field strengths and less specialized coils).

3.2. Computations
Phantom data was fed as |Xk| into model (1), from where
estimates of A and B were obtained. For the estimation,
20 iterations of the proximal gradient algorithm with a line-
search were run. Different hyperparameter settings were
tested: We varied the values of λA and λB, as well as the
sizes of the blocks extracted by operators Di

A and Dj
B. We

preselected a subset of such a grid of hyperparameters, based
on the goodness of the fit of A and B to their ground truth
counterparts. We computed all perfusion maps corresponding
to this restricted set and selected the ‘optimal’ hyperparam-
eters as those which provide the lowest error in the domain
of perfusion parameters. The results presented below cor-
respond to such a combination. Naturally, the five different
noise levels required five optimal hyperparameter selections.

The estimates obtained using the baseline method and the
proposed method were used as the input to the further steps
of simultaneous DCE-DSC-MRI perfusion analysis, imple-
mented according to [6, 7]: First, the DCE component, A,
was combined with the simulated pre-contrast images to con-
vert the T1-weighted image sequence to the image sequence
of CA concentration. Subsequently, the ATH model was fit-
ted to this sequence simultaneously with fitting the gradient-
correction model [4] (sharing some parameters with the ATH
model) to the DSC component B. This simultaneous fitting
was done for each voxel separately. Finally, the maps of per-
fusion parameters were used for evaluation. The selected per-
fusion parameters were: blood plasma flow Fp, blood plasma
volume vp, permeability-surface-area product PS , extravas-
cular-extracellular-space (EES) volume ve, and T2* relaxivi-
ties of the plasma and EES compartments r∗2p, r∗2e.

The estimation error is computed as follows: 1/ Each of
the two ROIs we chose (muscle and tumor, see Fig. 1) was

Fig. 2. Resulting perfusion maps. Column 1: Fp – voxel-
based method, column 2: Fp – regularized method, column 3:
ve – voxel-based method, column 4: ve – regularized method.
Individual rows correspond to the noise level, increasing from
top (SD=0.0001) to bottom (SD=0.001). Color coding corre-
sponding to the scale of images in Fig. 1. Normal-brain region
is masked out.

subject to morphological erosion. This had to be done due
to the incompatibility of spatial resolutions; our experiments
were carried out on 128×96 images, while the original phan-
tom is 1024×1024. The erosion secured that the pixels an-
alyzed further were truly inside the ROI. 2/ For each pixel
in a ROI, relative errors (in %) were computed w.r.t. the six
ground-truth perfusion parameters. 3/ Median relative errors
across the entire ROI were taken for the six parameters.

3.3. Results
The regularized method improves the quality of perfusion
maps compared to the voxel-based method, leading to a more
homogeneous muscle region and more distinct structures of
the brain tumor with fewer outliers (Fig. 2). Quantitative
evaluation in the muscle and tumor regions (Tables 1, 2,
Figs. 3, 4) shows the same trend, with the improvement being
more pronounced in the higher noise regimes. The estimation
errors are higher for the tumor, most probably because of
its heterogeneity, simulated as several small regions (Fig. 1),
which yields partial-volume artifacts (voxels covering multi-
ple regions).



Table 1. Median relative error in the muscle ROI w.r.t. ground-truth parameters; the suffixes ‘v’ and ‘r’ of the perfusion-
parameter symbols mean ‘voxel-based’ and ‘regularized’, respectively

Noise SD λA λB bl.sizeA bl. sizeB Fpv Fpr PSv PSr vev ver vpv vpr r∗2pv r∗2pr r∗2ev r∗2er
0.00010 0.0001 0.01 15 5 5.3 5.5 4.2 4.3 1.4 1.4 5.2 5.3 5.4 5.2 2.7 2.8
0.00025 0.0001 0.1 25 10 9.8 9.3 4.3 4.9 2.8 2.7 7.7 6.8 6.4 5.8 6.6 6.5
0.00050 0.0001 0.1 10 5 20.1 8.5 6.9 7.1 6.9 4.3 13.2 8.7 8.2 6.2 13.2 6.7
0.00075 0.0001 0.1 5 10 28.7 17.8 11.6 9.2 12.2 5.8 25.0 12.4 10.1 7.3 16.4 11.0
0.00100 0.0010 0.1 15 15 34.0 19.3 20.2 12.9 17.6 11.8 33.1 32.2 14.3 10.4 22.2 18.0

Table 2. Median relative error in the tumor ROI w.r.t. ground-truth parameters; the suffixes ‘v’ and ‘r’ of the perfusion-parameter
symbols mean ‘voxel-based’ and ‘regularized’, respectively

Noise SD λA λB bl.sizeA bl. sizeB Fpv Fpr PSv PSr vev ver vpv vpr r∗2pv r∗2pr r∗2ev r∗2er
0.00010 0.0001 0.01 15 5 13.8 12.8 30.8 30.2 6.5 6.2 16.9 16.5 12.6 12.0 5.8 5.8
0.00025 0.0001 0.1 25 10 25.0 22.4 31.5 33.8 9.8 9.9 22.2 17.8 13.5 10.6 10.2 9.1
0.00050 0.0001 0.1 10 5 39.2 24.5 27.5 31.7 18.0 14.5 26.1 19.2 15.5 8.1 18.8 9.4
0.00075 0.0001 0.1 5 10 42.6 38.1 24.0 31.7 39.5 23.7 34.3 25.2 29.9 9.6 38.9 19.4
0.00100 0.0010 0.1 15 15 52.6 48.8 30.4 32.6 58.6 34.8 39.7 36.7 38.9 13.5 58.9 33.9
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Fig. 3. Median of relative errors (RE) for Fp in muscle and
tumor regions.
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Fig. 4. Median of relative errors (RE) for ve in muscle and
tumor regions.

4. DISCUSSION AND CONCLUSION
This contribution presents an improvement of the first step in
simultaneous DCE-DSC-MRI processing, i.e., the extraction
of the DCE and DSC components from the MGE data. The
effect of this step on the whole DCE-DSC-MRI processing
chain was evaluated on a realistic synthetic perfusion phan-
tom, including the simulation of the acquisition process. The
results show a clear enhancement of the perfusion-parameter
maps obtained with the proposed regularized method com-
pared with the baseline method.

In this paper, only magnitude images of the reconstructed
MGE data were processed because often, on commercial
clinical systems, the data are available only in this form.
However, Gaussian additive noise is present in the complex
images (as correctly simulated here) and its distribution is
changed by the (nonlinear) magnitude operation to the Rician
distribution. To account for this, the exponential (i.e. two-
parameter) model of the intensity-versus-TE curves is often
extended by adding a constant factor as the third parameter.
Such an extended model is known to be more suitable es-
pecially in regions with a high level of noise and low image
intensity and it is planned to be included in the proposed
method in the follow-up work. An alternative approach is to
model the complex image data; however, this is possible at
the cost of an even more complicated model involving the
phase image component.

In our evaluation, the observed effect of regularization
might be affected by differences in the reconstruction of |Xk|
(use of sensitivity maps in the proposed method versus stan-
dard sum-of-squares reconstruction in the baseline method).
The effect of this factor will need to be studied separately.

The follow-up work will also include an illustration of
the method on real DCE-DSC-MRI data and a possible ex-
tension to include image reconstruction from undersampled
data. This would make it possible to extend the method from
2D (one slice) to 3D scanning.
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