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ABSTRACT
Two natural competitors in the area of narrow-band spectrum
analysis, namely the Chirp Z-transform (CZT) and the Gen-
eralized Goertzel algorithm (GGA), are taken and compared,
with the focus on the computational cost. We present results
showing that for real-input data, the GGA is preferable over
the CZT in a range of practical situations. This is shown both
in theory and in practice.

Index Terms— Generalized Goertzel Algorithm, Chirp
Z-transform, spectrum analysis, computational complexity,
comparison, speed

1. INTRODUCTION

A signal processing engineer is often interested in computing
the spectrum of a small band of interest at a fine resolution.
This applies both to amplitude (more often) and phase. The
standard FFT provides too coarse spectral information and is
global.

The Chirp Z-transform algorithm [1] (CZT) is a well-
established and widely used method for this type of spectral
analysis. The Generalized Goertzel Algorithm [2] (GGA)
can be utilized as well, since the generalization allows for
arbitrary, non-integer frequency indexes, in contrast to the
standard Goertzel algorithm (and the DFT). Since the GGA
has been introduced only recently, the respective computa-
tional costs have not been compared in the literature yet.

Of course, there are other methods of obtaining the de-
sired spectral samples: First, we can simply zero-pad the sig-
nal and run a standard FFT on this new sequence to get a
fine-resolved spectrum. However, with this approach the vast
majority of computed coefficients are of no interest. Methods
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such as the pruned-FFT [3, 4] can be applied to reduce the
computational cost, but their performance, roughly speaking,
heavily depends on the divisibility properties of the number
of frequency bins and the signal length. As a second option
we mention the Zoom-FFT [5]. As presented in [6], this algo-
rithm requires a number of steps including modulation, low-
pass filtering and decimation, which make the algorithm more
costly than both the CZT and the GGA.

The goal of this paper is to analyze the complexities of
the CZT and the GGA and find conditions under which one is
preferable to the other. Throughout the rest of this contribu-
tion we assume only real input signals.

In Sections 2 and 3 we briefly review the two algorithms.
The theoretical comparison is done in Sec. 4.1, while in Sec.
4.2 we present numerical experiments. Some other aspects
are then treated in Sec. 4.3.

2. GENERALIZED GOERTZEL ALGORITHM

The original algorithm invented by G. Goertzel [7], in the fol-
lowing abbreviated to GA, serves to compute the k-th single
DFT entry for the signal {x[n]} of length N , i.e.

X[k] =

N−1∑
n=0

x[n] e−j2πk nN , k = 0, . . . , N − 1. (1)

This equation can, of course, be used directly for obtaining
the DFT values, but the GA is advantageous because it re-
quires a quarter less computations [8]. Multiplying the right
side of equation (1) by 1 = ej2πkNN leads to its equivalent,

X[k] =

N−1∑
n=0

x[n] e−j2πk n−N
N , (2)

which could be regarded as a convolution. Standard signal
processing literature then helps to rewrite this as an second-
order IIR system. Denoting its state variables by s, the desired



spectral sample X[k] is found as the output of such a system
at time N :

X[k] = s[N ]− e−j 2πkN s[N − 1]. (3)

It should be emphasized that the transition from (1) to (2)
holds for integer-valued k only; in the case of k ∈ R, these
two formulas are generally no longer in agreement. In fact,
when k is not integer-valued, we should speak of the Discrete-
time Fourier transform (DTFT), defined by

X(ω) =

∞∑
n=−∞

x[n] e−jωn, ω ∈ R. (4)

With the notation ωk = 2π k
N , k ∈ R, we can write that

X(ωk) =

N−1∑
n=0

x[n] e−j2πk nN , (5)

where we exploited the compactness of the support of the sig-
nal {x[n]}.

The generalized Goertzel algorithm (GGA) [2] is applica-
ble for any k ∈ R: First, (5) is extended by unity in the form
of ej2πkNN · e−j2πkNN = 1 for k ∈ R, leading to

X(ωk) = e−j2πk
N−1∑
n=0

x[n] ej2πkN−n
N . (6)

Now with the same techniques as in the standard case we ar-
rive at the DTFT coefficient in the form of

X(ωk) =
(
s[N ]− e−j 2πkN s[N − 1]

)
· e−j2πk. (7)

Comparing this with the above, we indeed see that it is a gen-
eralization, since the constant e−j2πk equals one for k ∈ Z. In
fact, the only variation compared to the standard Goertzel al-
gorithm is the multiplication by this constant at the very end
of the algorithm. Clearly, e−j2πk affects only the phase of
X(ωk). We note that part of the community are aware of the
possibility of using the standard GA also for k 6∈ Z [6], but to
the best of our knowledge, this is only performed in the con-
text of measuring the amplitude, which is clearly not affected,
in contrast to the phase.

It is shown in [2] that the algorithm (in fact, both the stan-
dard and the generalized) can be further shortened by a few
computations. The shortened GGA is summarized in Fig. 1.

The GGA has been recently exploited as a fine-scale
spectrum analyzer for the detection of damages in cantilever
beams [9].

3. CHIRP Z-TRANSFORM ALGORITHM

The Chirp-Z transform, described well in a number of sources
[1, 8, 10], is a procedure used to compute a limited range of

Input: frequency “index” k ∈ R; signal x of length N
Output: y, representing X(ωk) according to eq. (5)

%Precalculation of constants
A = 2π k

N
, B = 2 cosA, C = e−jA, D = e−j 2πk

N
(N−1)

%State variables
s0 = 0, s1 = 0, s2 = 0
%Main loop
for i = 0 : N − 2 %one iteration less than traditionally
s0 = x[i] +B · s1 − s2
s2 = s1
s1 = s0

end
%Finalizing calculations
s0 = x[N − 1] +B · s1 − s2
y = s0 − s1 · C
y = y ·D %constant substituting the iteration N − 1, and correcting
the phase at the same time

Fig. 1. Generalized Goertzel algorithm with shortened itera-
tion loop. The changes, compared to the standard Goertzel
algorithm, are marked in color.

spectral frequencies, which are linearly spread over a partic-
ular range. Formally, we are interested in K spectral samples
ωk = ω0 + k∆ω, k = 0, . . . ,K − 1, i.e.

X(ωk) =

N−1∑
n=0

x[n]e−j(ω0+k∆ω)n. (8)

Substituting W = e−j∆ω and using a trick due to Bluestein
[11] yields

X(ωk) = W
k2

2

N−1∑
n=0

x[n]e−jω0nW
n2

2 W−
(k−n)2

2 (9)

for k = 0, . . . ,K−1, which can be treated as the convolution
of two sequences, namely {x[n]e−jω0nW

n2

2 } and {W−n
2

2 },
followed by multiplication by W

k2

2 . The name of the trans-
form comes from the fact that the signal {W−n

2

2 } is usually
called a (linear) chirp. Padding these sequences to a proper
length (power of two in common implementations) allows the
computation of (9) via fast convolution, i.e. via multiplication
in the spectral domain using FFT. The steps of the algorithm
are detailed in Fig. 2.

4. COMPARING GGA AND CZT

We first list a few basic, general facts about both algorithms
and then focus on quantifying the computational complexity.
• The GGA allows computations on the run, i.e. each time a

single new sample is acquired, immediate updating of the
state variables is possible. The CZT, on the other hand,
can only start when all the samples have been received.

• While the signal lengthN is usually pushed to be a power
of two for maximum FFT performance, the complexity of
the GGA grows linearly in N (for K fixed).



Input: starting frequency ω0 ∈ R; frequency step ∆ω; number of fre-
quencies K; signal x of length N ;
NFFT = nextfftlength (N +K − 1)
Output: Array y ofK complex numbers representingX(ωk) according
to Eq. (8)

%Precalculation
Form sequence c[n] = Wn2/2 for n = 0, . . . ,K − 1
Form sequence d[n] = e−jω0nc[n] for n = 0, . . . , N − 1
Form sequence of length NFFT:
h[n] = W−n2/2 for n = 0, . . . ,K − 1,
h[NFFT + n] = W−n2/2 for n = −(N − 1), . . . ,−1,
and zeros elsewhere.
Pad x with zeros to length NFFT.
%Main computation
g[n] = x[n]d[n] for n = 0, . . . , NFFT − 1
z[n] = g[n] ~ h[n] via fast convolution, i.e. using three FFTs
%Postcalculation
y[n] = z[n]c[n] for n = 0, . . . ,K − 1

Fig. 2. Steps of the basic Chirp Z-transform algorithm. Func-
tion nextfftlength (N +K − 1) returns the next fast FFT
length.

• The GGA is more flexible in choosing the frequencies, we
can for example vary the sampling density in the interval
of interest. This cannot be achieved by the CZT.

• Since the GGA is implemented as an IIR filter, large N
results in a propagation of the quantization error, thus in
the decrease of the accuracy [12].

It should also be noted that the general definition of CZT no
longer assumes the complex kernel to lie on the unit circle
as in the case in (8). The form of CZT restricted to the unit
circle is sometimes (improperly) referred to as the Fractional
Fourier Transform (FrFT) [13]. Dropping this assumption,
however, makes no difference to our analysis, since such a
generalization is possible for both the presented algorithms at
a negligible cost increase.

4.1. Computational cost in theory

The complexity of the radix-2 FFT is assumed to beαN log2N
in all the quantifications, where α ranges around the interval
from 4 to 5 for real inputs, depending on the implementation.

It can be easily shown [2] that for real input data of length
N the GGA requires 3N operations per extracted frequency,
which leads to an overall flop count of

FGGA = 3NK. (10)

In specific situations, it is possible to further simplify the
computations, based on combination of the FFT and Goertzel,
see e.g. [4], which is beyond the scope and intent of the paper.

Should the spectral analysis via (8) be evaluated for K
frequencies in this direct form, it would cost 8KN operations.
The flop count of the “fast” Chirp-Z transform is given by
4[αN log2N + (α+ 6)N ], which holds for the case K = N .

This result can be obtained adopting the analysis from [13].
For K < N it is possible to count the flops to

FCZT = 4αN log2K + (4α+ 25)N −K (11)

using a decimation/factorization scheme, under the assump-
tion that K divides N and N is a power of 2. If K and N do
not fulfill these conditions, the computational cost increases.

In the following we will compare the fast CZT, which
computes the K spectral samples at once, to obtaining the
samples individually using the GGA K times starting from
ω0 and hopping by ∆ω steps. Using the computational com-
plexities stated in formulas (10) and (11) we find the GGA to
be more efficient if 3KN < 4αN log2K+(4α+25)N−K.
Dividing this inequality by N and neglecting the term K/N ,
since we assume K � N , lead to

K <
1

3
(4α log2K + 4α+ 25) . (12)

The crossover point is approximately K = 53 for α = 5
and K = 42 for α = 4, under the above-mentioned circum-
stances. It is interesting to observe that this quantity is inde-
pendent of the signal length N . Concluding, the theory sug-
gests choosing the CZT if the frequency grid contains more
than about 50 points. If one is interested in computing fewer
spectral samples, then the GGA is more advantageous.

4.2. Computational cost in practice

The GGA implementation is a straightforward transcription
of the pseudo code in Fig. 1. The only trick used is a manual
unrolling of the outer loop over the required frequencies k, i.e.
it is divided into small chunks of length M and the algorithm
then uses M sets of state variables and constants. There are
two versions of GGA implemented: with (GGA curve) and
without (GGA(np)) precomputing the complex exponentials.

The CZT was implemented both directly as described in
Sec. 3 (CZT curves), and using the factorization/decimation
scheme [13] (CZT(fact), not described in this paper) using
the FFTW library [16]. In both cases all the chirps and fre-
quency responses possible were precomputed together with
the FFTW plans and as such they are not encompassed in
the measurements. We did so in order to make the run-
ning times comparable. The precomputing procedure in the
CZT algorithms implementations usually takes more than ten
times the duration of the actual computation even with the
FFTW ESTIMATE flag in FFTW plans.

Both algorithms for computing the CZT use padding to a
next length suitable for the FFT. Since the FFTW library con-
tains implementation of FFT algorithms not restricted to the
powers of two, but based on powers of small prime numbers,
we compare the implementations that use padding to the next
power of two (subscript nextpow2) and to the next lengths
with factors 2, 3 and 5 (subscript nextfastfft) [14].
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Fig. 3. An example of absolute timing result on a single com-
puter. Signal length 2000.

Implementation details
The benchmark programs were written in the C language
(standard C99) and compiled as 64-bit Windows binaries
using GCC 4.8.1 from the MinGW system provided by
the TDM-GCC compiler suite [15]. The FFT was com-
puted using the FFTW 3.3.3 library; more precisely, we used
the precompiled 64-bit binaries version obtainable from the
FFTW homepage. All FFTW plans were created using the
FFTW MEASURE flag, all inputs were real double data
type. The compilation was done using the -O3 optimization
parameter.

The source codes of the benchmark programs are avail-
able at the paper webpage [17]. Both the C and the Matlab
source codes of the algorithms are part of the LTFAT [18, 19]
beginning with version 1.4.4.
Results
We show a particular measurement in Fig. 3. We can see here
that the GGA complexity grows linearly (in both variants), in
accordance with the theoretic calculation. The timing for the
CZT is greatly dependent on the sumN+K. For example, the
abrupt step in the CZTnextpow2 curve is due to moving to the
next power of two at about 2048 samples. However, the point
where the compared methods cross each other is observable
in the nearness of K = 50 as suggested by the theory.

In Fig. 4, we present the relative results, averaged, in par-
ticular for a signal length of 500 samples. The same type of
plot is presented in Fig. 5, but for signal 700 samples long.

Due to the limited space for this contribution, we invite
the interested reader to visit the webpage [17] to see more
graphs, the computer configurations, etc. The crosspoints for
the tested lengthsN ∈ {300, 500, 700, 1024, 1300, 1700, 2000}
all fall into the range from K = 40 to K = 60. Generally,
CZT including the nextfastfft lenght selection was better than
the standard nextpow2 implementation. Interestingly, both
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Fig. 4. An example of relative timing results (the GGA being
the anchor), average over five computers, signal length 500.

Fig. 5. An example of relative timing results (the GGA being
the anchor), average over five computers, signal length 700.

the tested CZT(fact) algorithms perform worse than the sim-
pler methods that make no use of decimation/factorization.

We are aware of the fact that this study is performed only
on a fraction of possible computing system architectures. On
platforms (systems) other than PC (with MS Windows), the
results could differ, and this difference would be credited
mainly to the speed of the FFT (FFTW), since this is the
crucial part of the CZT.

4.3. Memory aspects

It should be noted that the GGA in comparison with the CZT
algorithms requires very little additional memory. In the pre-
computed version a complex array of length K is formed,
and the direct version requires only storing the state vari-
ables! In contrast, the CZT in its direct form requires stor-



ing K +N +NFFT plus memory for storing FFTW plan(s),
not counting the buffer for the FFT, but some memory can be
traded off for the increased execution time.

5. CONCLUSION

The paper shows that there is consistency between the theo-
retic and the practical comparison of the CZT and the GGA
algorithms used for fine-scale spectrum analysis. In our setup,
the GGA is advantageous over the CZT for number of ana-
lyzed frequencies not exceeding ca K = 50.

A natural idea comes consequently: since the GGA can be
parallelized trivially, on parallel systems it can beat the CZT
easily. But on the other hand, the CZT in its factored form
can also be made parallel from part. What will, in the end, be
the leading influence in the comparison depends on too many
factors to make a simple conclusion.
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