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ABSTRACT
The dissertation deals with SegDWT algorithms performing a segmented (segmentwise)
computation of one- and multi-dimensional Discrete Wavelet Transform – DWT. The
segmented approach allows one to perform the segment (block) wavelet analysis and
synthesis using segment overlaps while preventing blocking artifacts. The parts of the
wavelet coefficients of the whole signal wavelet transform corresponding to the actual
segment are produced by the analysis part of the algorithm exploiting overlap-save prin-
ciple. The resulting coefficients belonging to the segment can be processed arbitrarily
and than they can transformed back to the original domain. The reconstructed segments
are than put together using overlap add principle.
The already known SegDWT algorithm can not be effectively used on multidimensional
signals. Several modifications of the algorithm are proposed which makes it possible to
generalize it to multidimensional cases using separability property. In addition, the thesis
presents SegLWT algorithm adopting ideas of the SegDWT and transferring it to the
non-causal lifting filter bank structures.

KEYWORDS
discrete wavelet transform, lifting scheme, real-time, SegDWT, parallelization, overlap-
add, overlap-save

ABSTRAKT
Dizertační práce se zabývá algoritmy SegDWT pro segmentový výpočet Diskrétní
Waveletové Transformace – DWT jedno i vícedimenzionálních dat. Segmentovým
výpočtem se rozumí způsob výpočtu waveletové analýzy a syntézy po nezávislých seg-
mentech (blocích) s určitým překryvem tak, že nevznikají blokové artefakty. Analyzující
část algoritmu pracuje na principu odstranění přesahu a produkuje vždy část wavele-
tových koeficientů z waveletové transformace celého signálu, které mohou být následně
libovolně zpracovány a podrobeny zpětné transformaci. Rekonstruované segmenty jsou
pak skládány podle principu přičtení přesahu.
Algoritmus SegDWT, ze kterého tato práce vychází, není v současné podobně přímo
použitelný pro vícerozměrné signály. Tato práce obsahuje několik jeho modifikací
a následné zobecnění pro vícerozměrné signály pomocí principu separability. Kromě toho
je v práci představen algoritmus SegLWT, který myšlenku SegDWT přenáší na výpočet
waveletové transformace pomocí nekauzálních struktur filtrů typu lifting.

KLÍČOVÁ SLOVA
diskrétní waveletová transformace, lifting schéma, reálný čas, SegDWT, paralelizace,
metoda přičtení přesahu, metoda odstranění přesahu
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INTRODUCTION

The discrete wavelet transform (DWT) has been extensively studied over the recent

decades. Many applications have been proposed but the true power of the wavelet

transform lies in its performance in compression and denoising schemes. The exis-

tence of fast algorithms for its computation is another important factor. The well

known Mallat’s algorithm employs a perfect reconstruction two-channel filter bank

iteratively and the filter bank can be equally represented by a polyphase lifting

scheme. The iterative application of the lifting scheme (LWT – Lifting Wavelet

Transform) results in the same coefficients as the DWT does.

The present thesis deals with the problem of computing the one- and multi-

dimensional wavelet transform segmentwise. Often, it is impractical or even impos-

sible to load the whole input signal at once. When using common border extension

methods (e.g. zero-padding, periodization, symmetrical extension) the wavelet anal-

ysis results in “false” coefficients, which, in turn, result in distortion at borders of

segments after the synthesis, provided the wavelet coefficients were modified (e.g.

thresholded). The thesis presents an algorithm which circumvents the described

border artifacts by employing segment overlaps whose lengths are derived from the

actual discrete wavelet transform setup.

The idea of the algorithm (Segmentwise DWT – SegDWT) for one-dimensional

signals was originated by Mgr. Pavel Rajmic, Ph.D. in his dissertation Utilization

of Wavelet Transform and Mathematical Statistics for Separating Signal from Noise

[10]. The present thesis builds upon the algorithm and extends it in several ways as

you can read in the summary in the chapter 3.

The thesis is organized as follows. Chapter 1 contains a brief introduction to the

wavelet transform theory on sequences and finite-length signals and highlights areas

which are treated in greater detail for they are used later in the thesis. These areas

are Mallat’s algorithm, noble multirate identity, lifting scheme and extension of the

wavelet transform to multidimensional signals.

The next chapter 2 discusses other approaches to segmentwise computations of

the wavelet transform found in the literature and the main part of the chapter is

devoted to description of the original SegDWT algorithm and its parts.

Chapter 3 describes the main drawbacks of the original algorithm and states

objectives of the thesis.

Starting from the chapter 4 the presented ideas are solely an original contribution

of the author of the thesis. Chapter 4 is devoted to modifications of the original

algorithm which is not directly usable for multidimensional signals. The new possible

application of the algorithm rises from the presented modifications viz. Region of

Interest – ROI wavelet coefficients processing.

9



The next chapter, chapter 5, adapts the ideas of the segmentwise computation

to the lifting wavelet transform. The process of finding the correct overlaps is

fundamentally different and more complex. Also the non-causality of a lifting scheme

makes it difficult to cope with the extensions.

Chapter 6 contains a generalization of the SegDWT algorithm to multiple di-

mensions (images, videos, MRI images/videos).

Several programs were created as “proof-of-concept” of the proposed algorithms.

Therefore, chapter 7 describes VST plugin for a real-time wavelet audio process-

ing. Another application described in chapter 7 is the parallel wavelet transform

computation of large images.

The thesis is concluded by an evaluation of the presented contributions and by

stating directions for further research.

10



1 THEORETICAL BACKGROUND

Despite the relatively short time of its existence, the wavelet transform (WT) es-

tablished itself as a standard tool for digital signal processing. The brisk evolution

of the WT was driven by the need of a tool which would provide more effective

representations of signals than the already known ones. Usually, the different kinds

of representations were compared witch each other using sparsity or compressibility

property (number of nonzero or important coefficients) i.e. signal recovery accuracy

using just a minor number of the representation coefficients. Naturally, the property

of the WT resulted in its usage in many compression schemes for images e.g. EZW

[11], SPIHT [12] and its modifications, EBCOT [13] in JPEG2000 standard and

others and their extensions for videos and more dimensional signals.

The properties of the WT also allow an effective denoising [14] which can be also

found in many modifications.

In addition, the WT was successfully used in areas like image watermarking [15]

or computer vision [16]. Additional uncommon image operations in the wavelet

domain were presented in [17].

Preliminaries This paragraph establishes common mathematical notation held in

the thesis. Since the reader is expected to be familiar with the basic concept of the

continuous WT (scale function, MRA, dilatation equations, there are many intro-

ductory books and publications, to name a few: [18–20] ), the theoretical background

given in this chapter is limited to the discrete setting only. At first, signals x will be

considered to be possibly infinite but finite-energy sequences belonging to Hilbert

space ℓ2(Z) with a scalar product induced norm, later, a transition to finite-length

discrete signals (vectors) from Euclidean space CN will be made. Moreover, only

MRA compact support wavelets are considered allowing usage of the fast Mallat’s

algorithm for computing wavelet coefficients using FIR filter banks.

The signals will be denoted as vectors x, their nth element will be denoted as x[n]

and the subset of element as x[n]n∈I , where I denotes an indexing set. Whenever

the finite-length signal indexing is used, the zero index denotes the foremost sample.

Moreover, throughout the text J denotes the depth of the wavelet decomposition and

m denotes the length of the wavelet filters. The list of used symbols is summarized

at page 88.

The notion of the odd and the even downsampling (decimation) and upsam-

pling (interpolation) will become important when dealing with finite-length signals.

Regarding the downsampling, the factor N even downsampling repeats two steps

starting with the zero index sample: remove N −1 samples and leave the N sample,

whereas the odd downsampling does the steps in a reverse order: leave a sample

11



and than remove N − 1 samples. Similarly, the factor N upsampling adds N − 1

zero samples “between every two samples”. The even upsampling adds N − 1 zeros

at beginning and at the end of the signal whereas odd upsampling does not. If it is

not said otherwise, the even type will be considered throughout the text.

1.1 Wavelet Expansions on Sequences

The continuous WT theory concludes [21] that any practically interesting MRA

compact support dyadic wavelets have a characteristic finite-length dilatation coef-

ficient vectors hmr, gmr associated with them. In the discrete setting, using dilata-

tion coefficients and given number of scales J > 0, one can build basis for MRA

nested subspaces V(j) and their orthogonal complements W(j). In the orthogonal

wavelet case, at each j-th scale (level of decomposition), there is such set of se-

quences
{
ϕ(j)

p

}
p∈Z

which form orthogonal basis for subspace V(j) and for given j the

sequences are shifted versions of the original one ϕ
(j)
0 such as

ϕ(j)
p [k] = ϕ

(j)
0

[
k − p2j

]
k∈Z

(1.1)

where ϕ
(j)
0 is constructed using scale dilatation coefficients for j ≥ 1

ϕ
(j)
0 =

∑

k

hmr[k]ϕ
(j−1)
k , (1.2)

and arbitrary ϕ(j)
p as

ϕ(j)
p =

∑

k

hmr[k]ϕ
(j−1)
k+2p or ϕ(j)

p =
∑

k

hmr[k − 2p]ϕ
(j−1)
k . (1.3)

Similarly, at each scale j, there is a set of sequences
{
ψ(j)

p

}
p∈Z

which forms an

orthogonal basis for subspace W(j)

ψ(j)
p [k] = ψ

(j)
0

[
k − p2j

]
k∈Z

(1.4)

and using wavelet dilatation coefficients

ψ
(j)
0 =

∑

k

gmr[k]ϕ
(j−1)
k . (1.5)

ψ(j)
p =

∑

k

gmr[k]ϕ
(j−1)
k+2p or ψ(j)

p =
∑

k

gmr[k − 2p]ϕ
(j−1)
k . (1.6)

The nested subspaces V(j) are organized as follows:

V(J) ⊂ . . . ⊂ V(2) ⊂ V(1) ⊂ V(0), (1.7)

12



where V(0) = ℓ2(Z) and
{
ϕ(0)

p

}
= δ[n − p]p∈Z being Dirac train and for j ≥ 1 the

V(j−1) = V(j)⊕⊥W(j) and W(j) ∩W(i) = ∅ for j 6= i holds. Consequently the union

of subspaces V(J) and W(j) for j = 1, . . . , J covers whole ℓ2(Z) space

ℓ2(Z) = V(J) ∪W(J)
︸ ︷︷ ︸

V(J−1)

∪W(J−1)

︸ ︷︷ ︸
V(J−2)

∪ . . . ∪W(1). (1.8)

Denoting a(J) [p] as approximation wavelet coefficients at level J and d(j) [p] as

detail wavelet coefficients at the level j , the wavelet expansion of the input signal

x can be written as

x = a(J) [p]ϕ(J)
p +

J∑

j=1

d(j) [p]ψ(j)
p . (1.9)

As
{
ϕ(J)

p

}
and

{
ψ(j)

p

}
j=1,...,J

are orthogonal basis vectors for ℓ2(Z), the wavelet

coefficients of the input signal x are given by scalar products

a(J) [p] =
〈
x,ϕ(J)

p

〉
, d(j) [p] =

〈
x,ψ(j)

p

〉
, (1.10)

Using (1.3),(1.6) and a(0) = x, the a(j) and d(j) for j ≥ 1 can be written as

a(j) [p] =
∑

n∈Z

hmr[n− 2p]a(j−1) [n] , d(j) [p] =
∑

n∈Z

gmr[n− 2p]a(j−1) [n] . (1.11)

and similarly in the reverse direction for j = J, . . . , 1

a(j−1) [p] =
∑

n∈Z

hmr[p− 2n]a(j) [n] +
∑

n∈Z

gmr[p− 2n]d(j) [n] (1.12)

It is well known, that the equations (1.11) can be rewritten in a form of a

convolution followed by the downsampling (see fig. 1.1) and for the given J form

iterated two-channel filter bank. This way of computing the wavelet coefficients is

referred to as fast (discrete) wavelet transform or Mallat’s algorithm [20].

In the biorthogonal wavelet case, there are two sets of dilatation coefficient

vectors hmr, gmr and h̃mr, g̃mr and also two sets of hierarchical subspaces V(j) and

Ṽ(j)

V(J) . . . ⊂ V(2) ⊂ V(1) ⊂ V(0) and Ṽ(J) . . . ⊂ Ṽ(2) ⊂ Ṽ(1) ⊂ Ṽ(0), (1.13)

having basis vectors
{
ϕ(j)

p

}
,
{
ϕ̃(j)

p

}
respectively with V(0) = Ṽ(0) = ℓ2(Z) and{

ϕ(0)
p

}
=
{
ϕ̃(0)

p

}
= δ[n − p]p∈Z. For the given j, the bases are dual to each other,

which means that projecting vector onto one base gives coordinates in the sec-

ond one and vice versa. Similarly, there are complementary spaces W(j) and W̃(j)

with basis sequences
{
ψ(j)

p

}
,
{
ψ̃

(j)

p

}
respectively. The orthogonal complements are

13



V(j−1) = Ṽ(j)⊕⊥W(j) and Ṽ(j−1) = V(j)⊕⊥ W̃(j). Consequently, the union of sub-

spaces V(J) and W(j) and union of subspaces Ṽ(J) and W̃(j) for j = 1, . . . , J forms

MRA biorthogonal bases for the ℓ2(Z) space

ℓ2(Z) = V(J) ∪W(J)
︸ ︷︷ ︸

V(J−1)

∪W(J−1)

︸ ︷︷ ︸
V(J−2)

∪ . . . ∪W(1), (1.14)

ℓ2(Z) = Ṽ(J) ∪ W̃(J)
︸ ︷︷ ︸

Ṽ(J−1)

∪W̃(J−1)

︸ ︷︷ ︸
Ṽ(J−2)

∪ . . . ∪ W̃(1) (1.15)

As in the orthogonal case, the wavelet expansion is given by (1.9) but the wavelet

coefficients are calculated differently as projections onto the dual bases

a(J) [p] =
〈
x, ϕ̃(J)

p

〉
, dj[p] =

〈
x, ψ̃

(j)

p

〉
. (1.16)

Again, the projections and expansion can be calculated iteratively using fast Mallat’s

algorithm.

The two channel filter bank view of wavelet transform allowed new approaches

to wavelet transform design in a form of an orthogonal or biorthogonal filter bank

solutions satisfying a perfect reconstruction criterion [22, 23]. The approaches will

not be discussed further, just the main results concerning filter’s support and length.

The analyzing low-pass filter is denoted by h, the high-pass filter by g, the recon-

structing low-pass filter by h̃, and the high-pass filter by g̃, see fig. 1.1. The filters

directly define the dilatation coefficients hmr, gmr (and h̃mr, g̃mr in the biorthogonal

case).

↓2

↓2 ↑2

↑2

a(j−1) [n]

a(j) [n]

d(j) [n]

â(j−1) [n]b

h

g

h̃

g̃

Figure 1.1: Perfect reconstruction two channel filter bank.

Wavelet Filters in Detail

The filters can be of both odd and even length. (Satisfying m ≥ 2 at the same time,

to make the filtering significant.) The so-called quadrature mirror filters, which are
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always orthogonal, have all four identical lengths of h, g, h̃, g̃. The biorthogonal

filters nevertheless can have different effective lengths and can achieve properties

that orthogonal filters cannot (symmetry, linear phase). According to [22], one

of the following cases is true (both for the decomposition and the reconstruction

stages):

1. Both filters have odd lengths which differ by an odd multiple of two.

2. Both filters have even lengths, being either equal or differing by an even mul-

tiple of two.

3. One filter is of odd length, the other is of even length, and the zeros of both

the filters are located at the unit circle.

To work with filters of different lengths consistently, the shorter one is zero-

padded to the length of the longer one. Zeros, of course, do not affect the values

at the output of the filter. (The “lifting scheme” [24] which would make use of the

shorter length, is not exploited.) The rules for padding the shorter filter at both its

ends follow immediately and they correspond with the Matlab Wavelet Toolbox [25]

behavior.

In the following text, only the first two of the mentioned cases are considered

— case 3 is of no practical interest [22]. Two nonnegative variables l0 and r0 are

defined, denoting the number of zeros to be added from the left and the right end,

respectively. Denoting the effective length of the shorter filter by m, the following

naturally holds: m = l0 +m+ r0.

In the case 1 (odd m,m) the extensions are chosen so that l0 = r0 − 2, which

leads to

l0 =
m−m

2
− 1, r0 =

m−m

2
+ 1. (1.17)

In the case 2 (even m,m) the extensions l0, r0 are equal, which induces

l0 = r0 =
m−m

2
. (1.18)

Whenever a particular wavelet filter is mentioned in the paper, its abbreviated

labeling is taken over from [25].

Example 1: The biorthogonal filter bank bior2.2 comprises the analyzing low-

pass filter h = (h[0], . . . , h[4]) of length m = len(h) = 5 and the high-pass filter

g = (g[0], g[1], g[2]) of effective length m = len(g) = 3. This corresponds to case 1,

and according to (1.17), the extensions to be used are l0 = 0 a r0 = 2. Thus, the

resultant padded high-pass filter is (g[0], g[1], g[2], 0, 0).

Example 2: The biorthogonal filter bank bior1.5: the analyzing low-pass filter

h = (h[1], . . . , h[10]) of length m = len(h) = 10, the high-pass filter g = (g[0], g[1])

of only the effective length m = len(g) = 2. Case 2 should be used now, and

according to (1.18), the final extensions are l0 = r0 = 4. Thus the padded filter

takes the form (0, 0, 0, 0, g[0], g[1], 0, 0, 0, 0).
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From now on, h, g, h̃, and g̃ will denote filters already extended to have an

equal length m.

Remark 3: When filters of odd lengths are considered, there is one difference

between the Matlab Wavelet Toolbox [25] and the process just described. The

Wavelet Toolbox inserts an extra zero at the beginning of both the filters to make

their lengths be even.

1.2 Discrete Wavelet Transform of Finite Length

Signal

A question that immediately comes to mind when working with time-limited signals:

Since the fundamental part of DWT is convolution and since convolution is known

to exhibit “boundary artifacts”, how should one compute the wavelet coefficients

located “near the boundaries”?

Although this is not the main focus of this work, a summary of possible methods

which answer the above question is presented in this section. Let us say in advance

that all of the approaches suffer some shortcoming [18, 19, 25–28]. In this part of

text, just a single level of the wavelet decomposition J = 1 is assumed (without loss

of generality).

1. Using special border filters. In this case, the signal samples in the neighborhood

of the borders are reconstructed using special filters. The signal is not extended

in any way.

2. Assuming periodicity. The signal is considered to be one period of an infinite-

length periodic signal. If, in addition, the signal length is even, then the total

number of coefficients produced at the first level of decomposition is equal to

the original number of samples.

3. Defining samples outside of the original domain. The idea here is that the sam-

ples beyond the signal domain are extrapolated using a more or less suitable

and/or a more or less computationally demanding method. It is convenient to

divide the possibilities into several groups:

(a) Mirroring. The edge-samples are “mirrored” symmetrically. Such an ap-

proach brings “discontinuities” of the signals first difference. If symmetric

filters (only the biorthogonal filters can be symmetric) are used, it is pos-

sible to make the DWT representation non-redundant (non-expansive).

(b) Point-symmetric extension. [29] Using point-symmetry one can get rid

of the discontinuity mentioned.

(c) Smooth extension using polynomials. The method tries to “guess” sam-

ples outside of the signal domain using a polynomial of a specified order
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(kth order polynomial preserves the “continuity” of k-th derivative).

(d) Extending with zeros. This is the simplest method — the signal is con-

sidered to be zero beyond its original borders.

4. Using samples from the neighboring segment. This approach is natural when

the signal to be processed is in fact a time-limited portion cut from a longer sig-

nal. For example, in real-time speech processing the buffer holds 256 samples.

This type of method reasonably uses samples directly from its neighbor(s) to

extend the borders.

In this sense, such a method could be considered a special case of group 3.

Nevertheless, it is listed separately because in the case of the decomposition

depth being J > 1, the recursive nature of the DWT makes the necessary ex-

tension length greater when compared with the other methods. Such situation

requires more detailed treatment and modification of DWT and forms one of

the goals of this dissertation.

5. Cutting off. The goal of this naive approach is to keep the wavelet repre-

sentation non-redundant. The DWT computation is performed using any of

the above methods and then the “border” coefficients are simply discarded.

Therefore the reconstruction cannot be exact near the borders any more.

Each of the stated methods suffers at least one shortcoming from the following list:

• the necessity of having special border filters (which is not effective algorithmi-

cally),

• the deviation from (bi)orthogonality of the transform,

• inexact reconstruction from the transform coefficients,

• redundancy (expansivity) of the wavelet representation,

• possible errors at the “other end” due to periodicity.

Hence, in choosing a method, one always has to make a compromise.

We find the extension methods given under item 3 (and possibly 4) to be the

most natural and the most generally utilizable in practice; such methods have only

one drawback — expansivity — which means that the wavelet representation of

a signal will have the total number of coefficients a bit higher than number of the

input samples. As mentioned in 3a, there exist special situations when expansivity

does not appear — this is typical of image processing with biorthogonal filters, for

example [13]. Because of its universality, the generally expansive case 3 is considered

exclusively.
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1.2.1 Mallat’s algorithm for finite length signals

Since the Mallat’s algorithm application on finite-length signals may not be clear at

a first glance, it is established in the following text.

Algorithm 4:[Decomposing pyramid algorithm DWT] Let x be a discrete input

signal of length len(x), the pair of wavelet decomposition filters with length m is

defined as g and h , J is a positive integer denoting the decomposition depth. Also,

the type of boundary treatment has to be known:

1. Denote the input signal x by a(0) and set j = 0.

2. One decomposition step:

(a) Extending the input vector. Extend a(j) from both the left and the right

sides by (m− 1) samples, according to the type of boundary treatment.

(b) Filtering. Convolve the extended signal with filter g.

(c) Cropping. Take just its central part from the result, so that the remaining

“tails” on both the left and the right sides have the same length (m− 1)

samples.

(d) Downsampling. Downsample the resultant vector. Denote the result by

d(j+1) and store it. Than repeat items b) d), now with filter h, denoting

and storing the result as a(j+1).

3. Increase j by one. If it now holds j < J , return to item 2, in the other cases

the algorithm ends.

After Algorithm 4 finishes, the wavelet coefficients are stored in J + 1 vectors (of

different lengths) a(J),d(J),d(J−1), . . . ,d(1).

Algorithm 5:[Reconstruction pyramid algorithm DWT]

Given are: pair of wavelet reconstruction filters of length m – the highpass filter

g̃ and the lowpass filter h̃, number of signal samples in the time domain len(x) and

most importantly the J + 1 vectors of wavelet coefficients a(J),d(J),d(J−1), . . . ,d(1)

which are the result of the alg. 4.

1. Set j := J .

2. One level of decomposition:

(a) Upsampling. Perform the even type upsampling of the vectors a(j) and

d(j).

(b) Filtration. Filter upsampled, vectors i.e. perform a convolution with

reconstruction filters h̃ and g̃ respectively.

(c) Sum. Add up outcomes of both filtrations.

(d) Cropp off. From the sum, keep just the “middle” part which length

is equal to the length of vector d(j−1) skipping m − 1 samples from the

beginning. When j = 1 consider the length of the non existing vector

d(0) to be len(x).
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Denote the resulting vector as a(j−1).

3. Decrease j by one. If j > 0, than go to step 2., else the algorithm ends.

The result of the algorithm (the reconstructed signal) is in a(0) after the algorithm

ends.

1.2.2 Noble Multirate Identity

According to [30], the order of the FIR filters and the downsamplers/upsamplers can

be interchanged assuming FIR filter impulse response resampling. The property is

called noble multirate identity and it is shown in fig. 1.2. Using the property, the

iterated filter bank can be transformed into a non-iterated filter bank. An example

of such operation for J = 3 is shown in figures 1.4a and 1.4b for the analyzing filter

bank and in figures 1.5a and 1.5b for the reconstruction filter bank. The amplitude

frequency response and impulse responses of the analyzing multirate identity filter

bank are shown in fig. 1.4c and 1.5c respectively.

f ↑N

f↓N

↑Nf↑N

↑Nf ↓N

↓N ↓N

↓N

k1

k2

k1

k2

Figure 1.2: Multirate noble identities, commuting operations.

a(0) [n] c(j) [n]· · ·f ↓2 f ↓2 f ↓2

Figure 1.3: Path trough an iterated filter bank.

For the purposes of the thesis, it is crucial to derive lengths of the impulse

responses of the multirate identity filter bank. Given the length of the wavelet

filters m (possibly zero padded in the biorthogonal filter bank case) and given the

path trough the tree-structured analyzing iterated filter bank (from a(0) to c(j))
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where arbitrary basic filter h, g is denoted as f 1 (len(f1) = m) and accordingly its

2i-times upsampled version as f i and assuming the odd-type of upsampling it can

be written

len(f i) = len(↑ 2if1) (1.19)

len(↑ Nf 1) = N · len(f 1)− (N − 1) = N ·m− (N − 1) (1.20)

and the length of convolution of two impulse responses is equal to,

len(f i ∗ f j) = len(f i) + len(f j)− 1 (1.21)

then the length of the resulting single identical filter can be written as

len(f1 ∗ · · · ∗ f j) = m+ 2 ·m− 1− 1 + · · ·+ 2J ·m− (2J − 1)− 1 (1.22)

which can be rewritten to

len(f1 ∗ · · · ∗ f j) = (2j − 1)m− (2j − 2). (1.23)

1.2.3 Lifting Scheme

The lifting scheme representation of the wavelet filter bank was introduced by

Sweldens in [31] and according to [24], every wavelet filter bank can be decom-

posed (factored) into elementary lifting steps. In addition, lifting scheme brings yet

another way of designing wavelets using custom combinations of these elementary

lifting steps. Every transform by the lifting scheme can be inverted and it is per-

formed by a mere reversion of the lifting steps. The computation itself can be done

in-place (no external memory needed) and the computation cost can be reduced

compared to convolution. The factors are not unique so a considerable effort was

devoted to finding effective ones [24, 32, 33] because not every factorization is more

effective than the original filter bank. The most famous is the CDF9/7 wavelet

factorization, employed in the JPEG2000 standard [13]. Again, the factorization

process is not the aim of this work and the already known factors will be used.

Another feature of the lifting scheme is that rounding the results of predict

and update operation allows transformation which maps integers to integers, usable

especially for lossless data compression [31].

The LWT can also be generalized to non-translation invariant grids and allows

adaptivity of subsequent lifting steps [34]. However, these extensions are not con-

cerned in this work.
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1.3 Multidimensional Discrete Wavelet Transform

There are two ways of extending the discrete wavelet transform to multiple dimen-

sions [35]. There is the anisotropic and isotropic multidimensional wavelet trans-

form. The anisotropic transform consists of J level DWT of rows and then J level

DWT of columns (the roles of rows and columns are interchangeable), but this is

not preferred in practice. The isotropic version of the multidimensional WT is used

almost exclusively. This can be seen as the multidimensional separable orthogo-

nal basis is being built using a tensor product of one-dimensional subspaces. For

two-dimensional signals the following equation holds

V(j−1) ⊗ V(j−1) = (V(j) ⊕⊥W(j))⊗ (V(j) ⊕⊥W(j))

=
(
V(j) ⊗ V(j)

)
⊕
(
V(j) ⊗W(j)

)
⊕
(
W(j) ⊗ V(j)

)
⊕
(
W(j) ⊗W(j)

)
.

(1.24)

The approximation subspace is denoted as V(j) ⊗ V(j) and there are another three

detail subspaces: horizontal, vertical and diagonal detail spaces

W
(j)
H = V(j) ⊗W(j), W

(j)
V =W(j) ⊗ V(j), and W

(j)
D =W(j) ⊗W(j). (1.25)

Again, the level j approximation subspaces are nested and the union of detail spaces

at level j is its orthogonal complement to the coarse subspace at level one less.

By extending the equation (1.24) to even more dimensions, one can conclude that

in D dimensions, there are 2D−1 detail subspaces in addition to the approximation

subspace, resulting into total of J(2D−1)+1 subspaces. The multidimensional basis

vectors are also tensor products of the respective one-dimensional basis vectors and

they are separable with respect to the individual dimensions. Therefore, each level

of the transform can be done one-dimension at a time using multiple fast wavelet

transforms. In case of two-dimensional signals, first the rows, then the columns are

processed (or vice versa) as shown in fig. 1.6 (left).

The isotropic multidimensional transform results in the non-standard division of

spectra [19], see idealized separation of frequency bands for D = 2 and J = 3 in

fig. 1.6 (right). In fig. 1.7 (right), there is a concrete example of the wavelet repre-

sentation of the Lena image using level J = 3 and CDF9/7 wavelet with symmetric

boundary handling.
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Figure 1.4: Iterated filter bank for pyramidal algorithm DWT with J = 3. (a)

Analysing iterated filter bank according to fast DWT. (b) Noble multirate identity

of the iterated filter bank. (c) Module frequency response of the noble multirate

identity.
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Figure 1.5: Reconstruction iterated filter bank for pyramidal algorithm DWT with

J = 3.(a) Reconstructing iterated filter bank according to fast DWT.(b) Noble mul-

tirate identity of the iterated filter bank.(c) Impulse responses of the noble multirate

identity.
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Figure 1.6: (Left) One level of filter bank for a non-standard division of the spectra.

(Right) An idealized non-standard division of the spectra for J = 3.

Figure 1.7: Two-dimensional separable wavelet decomposition of Lena image, using

CDF9/7 wavelet and J = 3. Logarithm of absolute values of coefficients is displayed.

The representation is not expansive because of both symmetrical filters are symmet-

rical boundary extensions.
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2 MOTIVATION AND STATE-OF-THE-ART

Often in practice, there are situations when the input signal cannot be loaded and

processed at once or it is simply not yet known. The input signal is therefore loaded

one segment at a time, transformed to the wavelet domain, where all desirable

coefficient processing takes place and than transformed back to the original domain.

The importance of the border treatment is magnified for the border artifacts can

become a great issue. This chapter summarizes approaches to the segmented wavelet

processing.

Firstly, the shortcomings of the so-called “naive” approach to the segmentwise

computation of DWT will be shown. In this approach, no segment overlap is ex-

ploited and the segments are transformed using common border extension techniques

independently. The perfect reconstruction is achieved if the wavelet coefficients are

not subject to any kind of processing. Doing so, the artifacts at the borders rise up

after the reconstruction when compared to the whole signal reconstruction. Fig. 2.2

shows such situation at the 20th row of pixels taken form the Lena image. The setup

is as follows: 4 level decomposition is used with db4 wavelet, the wavelet coefficients

are hard-thresholded with λ = 150 i.e. all coefficients with absolute value less than

λ are zeroed. Sorted wavelet coefficients before and after thresholding are shown in

fig. 2.1.

In addition, 2J -shift invariant property of the DWT restricts segment division

lines to be multiples of 2J , otherwise additional inaccuracies can be introduced

provided a standard implementation of DWT is used. The example in fig. 2.2

satisfies this criterion.
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Figure 2.1: (Left) Log of the sorted absolute values of wavelet (both approximation

and detail) coefficients and the threshold λ = 150. (Right) Values smaller than

threshold are set to zeros.

The border artifacts are clearly visible in fig. 2.2.
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Figure 2.2: Artifacts at the borders of the segments. The dividing lines are at in-

dexes k = 48, 176, 432. The graphs show intensities x[k] of pixels from the 20th

row of the grayscale Lena image. The signal x[k] was transformed to the wavelet

domain (level 4, wavelet db4) by the DWT algorithm, wavelet coefficients were

hard-thresholded with λ = 150 and than used for reconstruction. The reconstructed

signal x̂seg[k] was obtained by processing coefficients belonging to individual seg-

ments, whereas x̂[k] by processing the whole input signal. Samples beyond segment

boundaries were assumed to be zeros (above) and symmetrically mirrored (below).

The border artifacts are clearly visible, although the symmetrical extension performs

better in this situation.
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Figure 2.3: Reconstructed signal degradation using general windowing with overlap.

The setup was the same as in fig. 2.2, 64 sample triangle window with 50% overlap

was used.

The next possible approach, adopted from the short-time Discrete Fourier Trans-

form, is based on signal windowing and overlapping the resultant segments. How-

ever, even when invertible (BUPU – bounded uniform partition of unity) windowing

is used, severe problems are introduced provided the wavelet coefficients are subject

to nonlinear processing (see fig. 2.3) or even to linear processing, which is not car-

ried out coefficient-wise, not to mention considerable potential numerical errors at

the window tails. Such approach is discussed in [36].

The state-of-the-art methods which can be found in the literature and which

treat the border problem differently will be discussed in the following text. However,

most of the methods seems to be derived for the special case when each segment

length is equal to a power of two. This assumption is their drawback, mainly for

larger segments (e.g. the difference between 1024 and 2048 can be inadmissibly big,

considering for example images, 10242 .
= 106 and 20482 .

= 4 · 106). Also, there are

situations where the segment sizes are not a power of two (e.g. the signal buffer size

in audio cards running with ASIO driver [37] could be 96 samples). The methods

can be divided into two classes according to their purpose (and set of drawbacks). In

the first class, there are methods for real-time wavelet transform which tend to allow

small errors and in the second class, there are methods for parallel computation of

the wavelet transform of images which calculate the wavelet transform exactly, but

they are usually tailored to the specific wavelet filter or just to wavelet analysis.

Moreover, the calculations are synchronized at each level of decomposition for the
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purpose of data exchange or partially calculated coefficients completion.

In [38], the border error-free method for the wavelet packet transform in the audio

coder setting (nonlinear wavelet coefficient processing) is introduced. The idea is

transferable to the wavelet transform and, for the wavelet analysis, it is based on

reusing the last m − 2 approximation coefficients at each level j from the previous

segment, achieving correct wavelet coefficients. However, the synthesis process is not

derived for arbitrarily filter lengths and its description is somewhat confusing and

therefore it is not clear whether the reconstruction is meant to be exact. Further,

the method clearly works only with segments with length equal to a power of two,

and it is restricted to the consecutive order of the segments.

The paper [39] describes a framework for linear time-domain digital audio effects

performed directly in the wavelet domain. The shift invariant wavelet transform is

employed using signal circular shifts. The segment lengths are again restricted to

a power of two. The border-end effect treatment method is built upon [38] but it

reuses the whole previous segment so that the input segment size is doubled. The

reconstruction segment length is preserved. This approach is somewhat “ad-hoc”

and can fail for more demanding combinations of filter lengths m and depths of

decomposition J or it can introduce a considerable redundancy of computations

when m and J are of small values especially for multidimensional signals.

Another attempt for real-time nonlinear wavelet processing (thresholding for

denoising) was introduced in [40]. The extensible moving window with a constant

step is employed but common border extension techniques are used.

The paper [41] performs rather general segmented computation of the wavelet

packet analysis (forward transform only) with arbitrary number of channels using

segment overlap. Although it is not stated explicitly, the segment length restriction

is lessened to a multiple of 2J , where J is the depth of the deepest branch of the

wavelet packet decomposition (depth of decomposition in the DWT case). Authors

claim that the boundary distortion was removed but from the results, it is clear

that it is not true for some combinations of J and m. Moreover, the overlaps seem

unnecessary high when compared to the further described SegDWT algorithm.

Authors of [42] bring an interesting approach to the segmented computation of

the forward DWT using a lifting scheme. They use postprocessing of the partially

transformed wavelet coefficients near the boundaries. No prior overlaps are used but

after the forward transform of two adjacent segments, the ending coefficients of the

first one and the beginning coefficients of the latter one are exchanged and they are

subjected to the postprocessing to achieve correct values. The method not seems to

restrict the segment lengths but adaptation of the method to the real-time setting

assuming requirement for the wavelet coefficient processing would be difficult, not

to mention the lack of the inverse transform.
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The methods for parallel computation of the forward wavelet transform tailored

to multiprocessor architectures with a message passing interprocessor communica-

tion were presented in [43] and later in [44] for the lifting scheme. The methods are

based on exchanging samples from neighboring segments as needed after one level of

the decomposition is calculated. The main focus of the papers is enumeration and

optimization of the message sizes. Again, the inverse transform is omitted and the

methods are not easily transferable to a real-time setting.

The paper [45] deals with another parallelization of the 2D-DWT using CUDA

architecture, but the segmented approach is not considered here. Rows and columns

of the image are taken as a whole.

Another approach to parallelization of lifting scheme 2D-DWT using CUDA is

taken in [46]. To use devices’ memory effectively, the sliding window with overlap is

used when processing columns of the image. However, only one level of the transform

is done in each sliding window run.

To the author’s best knowledge, there is but one algorithm which allows to

perform exact wavelet analysis and synthesis with a segment at the same time

provided equality of coefficients and reconstruction is preserved compared to the

whole signal wavelet analysis and synthesis – the SegDWT algorithm [10]. It employs

sophisticated segment overlaps for a correct wavelet coefficient synchronization and

an exact reconstruction (as if the signal had not been segmented). The segment

length is arbitrary as well as the depth of the decomposition and filter lengths.

However, there is one more thing: neither of the described methods allow seg-

ments of varying sizes. It does not seem to be an issue for one-dimensional real-time

signal processing but it can become an issue in the case of the parallel execution

when segments of equal length prevent an effective load balancing between process-

ing units.

2.1 SegDWT Algorithm

Since the SegDWT algorithm is the cornerstone of the thesis, it will be described in

detail. The algorithm processes the signal segment-by-segment and it comprise of

analysis (forward) and synthesis (inverse) parts and both of them consist of several

steps:

• Analysis (forward) part:

– Extension of the actual segment.

– Application of the (modified) Mallat’s algorithm.

– Removal of redundant coefficients.
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– The result consists of vectors of “full” wavelet coefficients, which are ready

to be processed.

• Synthesis (inverse) part:

– Zero padding of the input wavelet coefficients vectors.

– Application of the inverse Mallat’s algorithm.

– Addition of the overlap from the previously reconstructed segment.

The analysis part is in principle similar to the overlap-save algorithm (OLS) for

the linear convolution, while the synthesis part to the overlap-add (OLA).

Overlap methods for linear convolution are well known in conjunction with

fast convolution in spectral domain using FFT (circular convolution). Despite the

fact that the fast convolution is not used in the SegDWT (the reasoning is given

in sec. 7.1.2), the principles are valid even in the time domain. First, the linear

convolution process of one segment is depicted in fig. 2.4. The well known formula

for the linear convolution of two finite-length signals y = h ∗ x is

y[n] =
m−1∑

k=0

h[k]x[n− k], (2.1)

for x[n] being the input signal segment of length s, h[k] being the impulse response

of length m and y[n] denotes the output signal of length s+m−1 for n = 0, . . . , s−

1 +m− 1.

m− 1 zeros

h[n]

x[n]
n

n

influencing

influenced

m

m− 1

m− 1
y[n]

s

m− 1

fade-outfull response

012

210 3−2−1−3

210 3

...

...

...

...

Figure 2.4: Segment convolution in detail. Segment of length s from input signal

x[n] is linearly convolved with impulse response h[n] of length m. Redrawn from

[47] and modified.

The OLS algorithm reuses last m−1 samples (influencing samples) from a previ-

ous segment and it does not calculate m−1 “fade-out” samples. m−1 samples from

the beginning are discarded afterwards for they are used only to make the m − 1

influenced samples into full response (fig. 2.5). Usage of the algorithm is shown at

fig. 2.6.
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h[n]
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n

n

influencing

influenced

m

m− 1

m− 1
y[n]

s

full response

m− 1

m− 1 zeros

to be discadred

Figure 2.5: OLS Segment convolution in detail.

x[n]
n

y[n]

ss s

n

m− 1

discard

Figure 2.6: Overlap-Save Algorithm in detail. Last m− 1 samples of each segment

are “saved” for the following segment. Redrawn from [47] and modified.

The OLA algorithm always uses zero padding i.e. m − 1 zero samples are ap-

pended to the end of each segment. The fade-out samples are then held to be added

to the first m − 1 influenced samples of the following segment (fig. 2.4). Usage of

the algorithm is shown at fig. 2.7.

2.1.1 Algorithm description

This section describes the actual SegDWT algorithm as it was presented in [10].

The SegDWT algorithm was developed for FIR orthogonal filter banks, but FIR

biorthogonal filters can also be used if zero padded to the same length according to

section 1.1.

The one-dimensional input signal x is divided into N ≥ 1 segments of equal
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x[n]
n

y[n]

ss s

n

m− 1 zeros

Figure 2.7: Overlap-Add algorithm in detail. m − 1 zero samples are appended to

the end of each segment. After convolution, these samples represent overlap, which

has to be added to the beginning of the next segment. Redrawn from [47] and

modified.

length s. The last one can be shorter than s. To achieve a correct follow-up of

two sets of wavelet coefficients at decomposition level j it is necessary that the two

consecutive segments to be properly extended. It has been shown that the two

consecutive segments must have

r(j) = (2j − 1)(m− 1) (2.2)

input samples in common after they were extended. This extension has to be divided

into the right extension of the first segment (of length R) and the left extension of

the following segment (of length L) so that r(J) = R+L, however R,L ≥ 0 cannot

be chosen arbitrarily. The minimum suitable right extension of the segment n for

n = 0, 2, . . . , N − 2 is

nRmin = 2J

⌈
(n+ 1)s

2J

⌉
− (n + 1)s, (2.3)

and the maximum left extension of segment (n+ 1) is

n+1Lmax = r(J)− nRmin. (2.4)

The algorithm works such that it reads (receives) individual segments of the

input signal, it makes them extend each other in a proper way, then it computes the

wavelet coefficients in a modified way and, in the end, it easily joins the coefficients.
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For simplicity, the whole signal border extension method is assumed to be zero

padding, but the transition to different treatments is straightforward. The algorithm

is stated as follows:

Algorithm 6:[SegDWT analysis v. 1.0] Let the wavelet filters g,h of length m,

decomposition level J and boundary treatment be given. The input signal x is

divided into N segments of equal length s ≥ 2J and the segments are denoted by
0x,2 x,3 x, . . . , N−1x.

1. Set n = 0.

2. Read the first segment, 0x, label it as “current” and extend it from left by r(J)

zero samples.

3. If the current segment is also the last one (n = N − 1) at the same time,

compute DWT of this segment using Algorithm 4 and finish.

4. Load (n+ 1) segment and label it as “next”.

5. If the next segment is the last one:

(a) Combine the current nx and the next segment n+1x, set this new segment

as current (the current becomes the last one).

(b) Extend the current segment by r(J) zero samples from the right.

(c) Calculate DWT of depth J from the extended current segment using the

Algorithm 4.

Else

(d) Determine n+1Lmax for the next segment and nRmin for current segment

using formulas (2.3) and (2.4).

(e) Extend current segment from the right by nRmin samples from the next

segment. Extend the next segment from the left by n+1Lmax samples from

the current segment.

(f) Calculate the DWT of depth J from the extended current segment using

the algorithm 4 with omitting step 2(a).

6. Modify the vectors containing the wavelet coefficients by trimming off a certain

number of redundant coefficients from the left side, specifically: at the level j,

j = 1, 2, . . . , J − 1 trim off r(J − j) coefficients.

7. If the current segment is the last segment, trim off the vectors in the same

manner as in the previous step r(J − j) but this time from the right.

8. Store the result as na(J),nd(J),nd(J−1), . . . ,nd(1).

9. If the current segment is not the last one, set the next segment as current,

increase n by 1 and go to item 4.

The output of Algorithm 6 is N(J + 1) vectors of wavelet coefficients

{
ia(J),id(J),id(J−1), . . . ,id(1)

}N−1

i=0
(2.5)
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If we simply join these vectors together, we obtain a set of J + 1 vectors a(J),

d(J), d(J−1), . . . , d(1), which are identical to the wavelet coefficients of signal x.

Blocks of wavelet coefficients produced segment-by-segment by the forward part

of the SegDWT constitute the input for the inverse algorithm. Analogue to the

forward case, we use the boolean flag last, which becomes true if the very last

segment is to be processed.

In addition to that, the signal parity is kept (i.e. if the accumulated length is

is even or odd). The information is then used at the very end of the signal for

deciding to cut or not to cut the last reconstructed sample. The inverse SegDWT

partly utilizes the overlap-add principle for joining the reconstructed pieces of the

time-domain signal. The length of the overlap stays r(J) all the time.

Algorithm 7:[SegDWT synthesis v. 1.0] Let the decomposition depth J be given,

as well as wavelet reconstruction filters g̃ and h̃ of lengths m, and coefficients
na(J),nd(J),nd(J−1), . . . ,nd(1) for all n.

1. Set n = 0. Set last = 0.

2. If last = 1, then the Algorithm ends.

3. Read the n block of coefficients and update “last”.

4. Extend the detail coefficients: at the level j, j = 1, . . . , J −1, append r(J − j)

zero coefficients from the left side.

5. Compute the inverse transform of depth J using Algorithm 5 with omitting

the cropping part.

6. If n 6= 0, recall the samples for the overlap, saved in the last cycle, and add

them to the current inverted block.

7. Update the parity of the signal.

8. If last 6= 1, append the central, non-overlapping part to the output. Save the

samples of the overlap of the current inverted segment for the next cycle.

Otherwise Append the whole inversion to the output. Eventually, crop sev-

eral samples from the end of the signal.

9. The output (a segment of a time-domain signal) is now complete and prepared

to be “sent”.

10. Increase n by 1 and return to item 2.

The analysis and synthesis parts of the SegDWT algorithm can be both used on

the actual segment consecutively thus forming a universal algorithm for any kind of

wavelet coefficient processing task in real-time. The algorithm usage in this setup

is shown in fig. 2.8 and fig. 2.9.
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2.1.2 Algorithm Remarks

Extensions of the first (n = 0) and the last (n = N − 1) segments are treated

differently and their values are

0Lmax = N−1Rmin = r(J). (2.6)

Given the actual segment nx and its extended version nxext, the length of the coef-

ficient vectors nc
(j)
ext at levels j = 1, . . . , J before trimming is given by

len(nc
(j)
ext) = nN

(j)
ext =

⌊
len(nxext)2

−j + (2−j − 1)(m− 1)
⌋
, (2.7)

where len(nxext) = nLmax +s+nRmin, and m denotes the length of the wavelet filters.

However, first

N
(j)
disc = r(J − j) (2.8)

coefficients at each level j < J are calculated redundantly and they are discarded

according to the algorithm description. In addition, the same number of coefficients

of the last segment are discarded from the right. Therefore, the number of coefficients

after discarding the redundant ones is

nN
(j)
coef = nN

(j)
ext −

nN
(j)
disc, (2.9)

except for the last segment which will have

N−1N
(j)
coef = N−1N

(j)
ext − 2 · N−1N

(j)
disc, (2.10)

coefficients remaining.

In the real-time setting, the algorithm delay is

• r(J) samples if (s mod 2J) = 0 and therefore nRmin = 0 for each n,

• s+r(J) samples in all other cases, for the following segment have to be waited

for.

Another remark from [10] regards the fact that the extensions are periodic with

respect to the segment number.
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Figure 2.8: SegDWT algorithm demonstration example. The input signal x[n] of length 401 is divided into 4 segments of length 92

and one of length 33, therefore n = 0, . . . , 3. J = 3, m = 4 (e.g. db2) which, according to (2.2), leads to r(3) = (23− 1)(4− 1) = 21.

Individual segments are extended from neighbors according to (2.3) and (2.4) e.g. 0Rmin = 23
⌈

92
23

⌉
− 92 = 4 and 1Lmax = 21− 4 = 17.

Using modified DWT on the extended segments, the wavelet coefficients are obtained (in rectangular boxes), from which the initial

r(J − j) redundant samples are discarded (this only applies to the detail wavelet coefficients at level j < J since r(0) = 0). At this

point, wavelet coefficients can be processed in any way as they are identical to the whole signal wavelet transform. Prior to the

inverse transform, the previously discarded samples are appended back but as zero samples. After the inverse DWT, the last r(J)

samples of each segment form overlap.
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Figure 2.9: SegDWT algorithm example in the real-time setup. The input signal x[n] is processed by segments of length s = 92.

The length of the wavelet filters is m = 4 and the depth of decomposition is J = 3. This setup leads to r(J) = 21. Note that

the reconstructed signal is delayed by the r(J) samples; the first r(J) samples of the reconstructed signal can be viewed as the

“reconstruction warmup” and should be set to zero.

37



3 THESIS OBJECTIVES

The advantages of the segmentwise computation of DWT were discussed in chapter

2. Algorithms for such computations can already be found in the recent literature,

however, except for one, they were developed for a concrete application or/and are

restricted to one type of wavelet filter and most of them lack perfect recovery. The

special case (SegDWT in [10]) was formulated more universally but just for the one-

dimensional case and with the assumption of equal segment lengths. Direct usage of

the algorithm for multidimensional signals seems to be too restricting to be usable

in practice. Thus the first objective of this thesis deals with modifications of the

original algorithm.

The following list summarizes the main drawbacks and restrictions of the original

algorithm design and proposes modifications to achieve maximal generality:

• The left extension nLmax is chosen to be as high as possible to maximize re-

usage of the received samples due to the original purpose of the algorithm for

real time processing of the acoustic signals. The extension lengths can clearly

be stated more universally, therefore formulas for the other extreme nLmin and

all intermediate values will be derived.

• The algorithm considers only segments of equal size. This is inconvenient

because it allows only square (cube) segments in multidimensional signals and

prevents a dynamic splitting of segments. It will be shown that the lengths of

both the right and the left extensions of the n and (n+1) segment, respectively,

depend only on the position of their dividing line which in turn allows an

arbitrary rectangular (box) segment shape for multidimensional signals.

• The extensions are unnecessarily long. A more detailed analysis of the SegDWT

algorithm reveals the fact that the even type of subsampling indirectly in-

creases lengths of extensions. It will be shown that a small modification can

save up to 2J − 1 samples of extensions. The number of the saved samples

increases even more with increasing number of signal dimensions.

• Another restricting factor is the need of the right extensions itself. The algo-

rithm analysis shows that the minimum right extension nRmin is employed just

to align the right border of the segment to a multiple of 2J , thus nRmin = 0

when the dividing line index is a multiple of 2J . This restriction can be also

lifted by encompassing the (nonzero) right extension to the left one provided

there is another modification of the algorithm. This is clearly beneficial when

causality is a need (e.g. audio, video signals). There is a workaround proposed

in the original algorithm, but it increases the processing delay by a whole seg-

ment duration.

Having the generally stated SegDWT algorithm, the next goal is to tailor it to
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the concrete usage exploiting prior information about the processed signal while

optimizing some parameters of the algorithm. Since the original algorithm employs

a overlap-save for the analysis and a overlap-add for the synthesis, the new versions

of the SegDWT are:

• Overlap-save SegDWT analysis with overlaps in wavelet domain In case of

consecutive order of segments, the memory requirements can be reduced using

overlaps directly in the wavelet domain (approx. coefficients at levels j =

0, . . . , J − 1).

• Overlap-Add SegDWT analysis and Overlap-Save SegDWT synthesis In some

situations, it can be beneficial to use complementary methods i.e. Overlap-

Add for analysis and Overlap-Save for synthesis. Especially where a parallel

processing of more segments is concerned, the overlap-add approach creates a

so-called “race condition” [48] i.e. two parallel writes to one memory location

can overwrite each other and result in errors.

• Region of Interest wavelet coefficient processing Combining Overlap-Save type

of SegDWT for both analysis and synthesis brings the possibility of processing

arbitrary segment truly independently in a sense that the current segment

samples are fully reconstructed in opposition to the incomplete reconstruction

of the last r(J) samples when using OLA type SegDWT for synthesis, provided

the equality of wavelet coefficients with the appropriate parts of the whole

signal wavelet transform.

All the proposed modifications are presented in chapter 4.

Bearing the proposed modifications in mind, the second objective of the thesis,

the multidimensional extensions via separability property, are relatively simple and

can be stated universally for arbitrary dimension number which is done in chapter 6.

The lifting scheme forms an alternative to the wavelet transform computation

and can also be conducted segmentwise. Since the lifting scheme is more complex

than the plain two channel filter bank, the segmentwise algorithm for LWT is not

as straightforward as in SegDWT case. Therefore, the chapter 5 describes the de-

velopment of several algorithms, which, in the end, produces desired left end right

extensions.

The last objective of the thesis is to verify the proposed algorithms in real-life

applications.
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4 SEGMENTED DISCRETE WAVELET

TRANSFORM

This chapter1 contains all the modifications introduced in chapter 3. The purpose

of these modifications is to increase generality of the algorithm, since the original

algorithm is not directly usable for multidimensional signals. The desired properties

are: an arbitrary order of segments to be processed, the independence of calculations

so they can be carried out in parallel, custom extension lengths manipulations and

an effective exploitation of 2J -shift invariance.

Section 4.1 builds algorithm with the maximally general properties. The general-

ity comes at a cost of slightly more complicated formulas for the segment extensions

lengths and there can be some redundant computations while sections 4.2 and 4.3

present modifications that lead to optimization in some sense while sacrificing other

properties.

All further presented modifications were implemented in Matlab and the codes

can be found on the accompanied DVD and on the SegDWT algorithm webpage

[49].

4.1 SegDWT Analysis and Proposed Extensions

Prior to the description of the modifications, a detailed analysis of the original al-

gorithm is needed. The following text follows section 2.1 and discusses details and

remarks not yet described. First, the input samples and the wavelet coefficients

x

c(1)

46

c(2)

c(3)

24

13

8

Figure 4.1: The input samples and the wavelet coefficients alignment of the input

signal of length 46 using a wavelet with filter lengths m = 4 and depth of decompo-

sition J = 3. Gray coefficients denote “range” of the impulse response during the

linear convolution.

alignment of the whole input signal x need to be established. The even down-

sampling and the expansivity property result in the coefficient alignment shown in

1The research in this chapter was conducted jointly with Mgr. Pavel Rajmic, Ph.D. Publications

related this this chapter are [1–3].
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fig. 4.1.

The number of coefficients N
(j)
coef at level j of the input signal of length s when us-

ing filters of length m can be easily derived recursively, using a number of coefficients

at the previous level. In [2], we derived a non-recursive formula

N
(j)
coef =

⌊
2−js+ (1− 2−j)(m− 1)

⌋
. (4.1)

There are both left and right extension of the segments employed in the SegDWT

algorithm (recall (2.3) for nRmin and (2.4) n+1Lmax).

The purpose of the right extension is to align the end of each segment to be

integer multiple of 2J , which results in the correct alignment of vectors of wavelet

coefficients and to the unification of all consecutive calculations.

The purpose of the left extension is to provide enough samples from the pre-

ceding segment(s) to “fully” (meaning as if the whole input signal was available)

calculate the wavelet coefficients at the topmost level of decomposition. Together,

both extension provide r(J) (from (2.2)) samples needed for the first coefficient at

the topmost decomposition level in the current segment to be calculated fully.

It is clear that like this the lengths of the extensions can vary from segment

to segment, and that the respective lengths are thus induced, in contrast to the

STFT-type classical windowing where the overlap lengths are fixed.

Forward SegDWT As it was stated, after the extension of the segment, the Mal-

lat’s algorithm (see sec. 1.2.1) is employed but without step 2a, Extending the input

vector. Alternatively, it can be seen as using OLS type of convolution in each itera-

tion of Mallat’s algorithm, assuming influencing samples (see fig. 2.4) to be already

provided by the means of the segment’s left extension. Since the OLS convolution

in addition does not calculate “fade-out”, the outcome of the OLS convolution is

shorter by m − 1 samples (from the beginning) prior to the downsampling. After

downsampling, the number of coefficients is equal to (2.7).

The detailed depiction of the forward SegDWT at the segment transition is

in fig. 4.2. In the figure, n+1S denotes the index of the leftmost sample of the

n + 1 segment in a global point of view, prior to the extensions. Clearly, n+1S =

(n + 1)s assuming 0S = 0 and equal length of segments. This denotation will be

more convenient in the rest of this chapter.

Inverse SegDWT The reconstructed segment length and position is equal to the

length and position of the one analyzed after extensions.

Prior to the reconstruction, r(J − j) zero coefficients are appended to the be-

ginning of the coefficient vector at level j (see fig. 4.3). In contrast to the forward
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n+1x

n+1c(1)

nc(1)

n+1c(2)

nc(2)

nc(J)

n+1c(J)

Figure 4.2: Transition between two consecutive segments n and n + 1 at index
n+1S = (n+1)s in the time-domain signal x. The segments are extended by nRmin and
n+1Lmax samples accordingly. The wavelet coefficients c(j) belonging to respective

segments are shown. The coefficients belonging to the segment (n+1) lying to the left

from the dividing line marked as r(J − 1), r(J − 2), . . . are calculated redundantly

and they ought to be discarded after the computations are complete. Also the

wavelet coefficients of the n segment are aligned to the dividing line due to the right

extension.

SegDWT, the non-shortened (linear or OLA) version of convolution is employed af-

ter the even upsampling of the coefficient vector. This means that the length of the

intermediate reconstruction vector grows between steps of the reconstruction and

results in the overlap of r(J) samples reaching to the neighboring segment.

Another remark, considering the inverse transform, regards the fact that after

the reconstruction of the whole signal, there are additional and redundant r(J)

samples at the beginning. Additional samples at the beginning bring ambiguity to

the indexing of the reconstructed signal which can be viewed in two ways:

• The reconstruction is delayed by r(J) samples. Hence the indexing of the input

signal and the reconstruction does not match and also last the r(J) samples of

each reconstructed segment form overlap to the next one. This view is natural

in the real-time setup.

• The first r(J) samples of the reconstruction are not included in the indexing.

The indexing of both the input signal and the reconstruction matches and this
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Figure 4.3: The inverse SegDWT in detail. The initial zero padding of the detail

coefficients at levels j = 1, . . . , J − 1 causes a relative shift of individual coefficient

vectors. This padding in turn causes the proclaimed delay of the reconstruction by

r(J) samples.

time, on the contrary, the first r(J) samples of each segment overlap to the

previous segment.

The second view will be considered in the following text to prevent an ambiguity.

When necessary, the value according to the first view will be placed in brackets.

Examples of both the forward and the inverse SegDWT are shown at fig. B.6a

and fig. B.6c respectively.

Noble multirate identity and the SegDWT algorithm There is a nice con-

nection between the noble multirate identity representation of the iterated filter

bank (see sec. 1.2.2) and the SegDWT remarks. By supplying j = J to (1.23) one

can get length of the filter identical to the longest branch of the iterated filter bank:

len(f 1 ∗ · · · ∗ fJ) = (2J − 1)m− (2J − 2). (4.2)

After a simple manipulation, the formula changes to

(2J − 1)(m− 1) + 1, (4.3)

and thus the necessary filter overlap is exactly equal to the r(J) from (2.2).
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4.1.1 Enstensions tradeof

As was mentioned, the original algorithm allows constant-length segments only and

uses minimum right and maximum left extensions of two consecutive segments.

Other possibilities were not derived in the original work and therefore this section

completes them. Following ideas and the mathematic style of [10], the following

notions are built upon the Theorem 8.11 (from [10]) which can be re-written as:

Theorem 8: Let the segment n is given, whose length including its left extension is
nl. Then the left extension of the next segment n+1L can be computed by the formula:

n+1L = nl − 2Ji for integer i ∈

[
nl − r(J)

2J
,

nl

2J

]
. (4.4)

And for the right extension of n-th segment the following holds:

nR = r(J)− n+1L. (4.5)

The maximum left extension n+1Lmax is naturally reached for the lowest i =
⌈

nl−r(J)
2J

⌉

which is also done in the original algorithm, and the minimum left extension n+1Lmin

can be obtained when taking the other extreme, the highest i =
⌊

nl
2J

⌋
. Rmin (for Lmax)

is already known (2.3) and nRmax (for n+1Lmin) can be written as

nRmax = 2J

⌊
(n + 1)s+ r(J)

2J

⌋
− ns, (4.6)

(The proof is the same as in Theorem 8.14 in [10]). We can rewrite formula (4.4) as

n+1L = nl − 2J

(⌈
nl − r(J)

2J

⌉
+ k

)
where k ∈ N

0, (4.7)

satisfying n+1L ≥ n+1Lmin at the same time. Having compared formulas (2.3), (4.6)

and (4.7), we can write the right extension of segment n as:

nR = 2J

⌈
(n+ 1)s

2J

⌉
− (n+ 1)s+ 2Jk, where k ∈ N

0, (4.8)

or alternatively as
nR = nRmin + 2Jk where k ∈ N

0, (4.9)

satisfying nR ≤ nRmax at the same time. Using this formula and (4.5),(2.2) one

can “trade-off” the multiples of 2J samples between extensions up to defined values
nRmax and n+1Lmin. Note that the resulting coefficients after wavelet analysis are

traded too: it makes k2J−j coefficients at level j and the formula (2.7) includes

them.

Examples of the modification for both forward and inverse SegDWT are shown

in fig. B.6b and fig. B.6d respectively.
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4.1.2 Segments of different sizes

This modification appears to be the most important one. It lifts the constant seg-

ment length constriction which impacts the algorithm significantly. Namely:

• The extensions depend on nS (index of segment’s first sample from the global

point of view) rather than on segment number and segment length (for example
nL→

nSL but nR→
n+1SR and r(J) =

nSL+
nSR)

• The extensions become 2J -periodic with respect to a sequence of nS increasing

by one.

• Dynamic splitting of segments is allowed.

• The segments do not have to be processed in the consecutive order.

• The algorithm can be further developed just for the general case of the two

consecutive segments.

• Each transition between segments can be treated individually.

The following theorem describes the presented modification.

Theorem 9: The right extension of the segment n (n = 0, 1, 2, . . . , N − 2) and the

left extension of the segment (n + 1) are given by the length of the portion of the

signal starting at the beginning and ending at the end of the segment n (the number

of already processed samples or the index of the segment’s first sample from the global

point of view) nS, and the following holds

nSR = 2J

⌈nS

2J

⌉
− nS + k2J for k ∈ N

0, while
nSR ≤

nSRmax, (4.10)

at the same time, or alternatively

nSR =
nSRmin + k2J for k ∈ N

0, while
nSR ≤

nSRmax (4.11)

The extensions are not dependent on the number of previous segments neither on

their lengths. The proof A can be found in appendix A.

This result is graphically shown in Fig 4.4.

4.1.3 Extension length reduction

As it was stated previously, globally the even type of up-/down-sampling is consid-

ered. In practice, in the dyadic case, it means discarding every first sample after

every convolution. This is a legitimate operation for the wavelet transform of the

whole signal, since it is a commonly accepted convention. In a segmentwise case, the

left extensions have to be long enough to allow discarding first sample in each level

after convolution which is clearly a waste of computational resources. Switching

from the even to the odd type of up-/down-sampling, the left extension is reduced

by 2J − 1 samples. The change is done just for the segmentwise computation pur-

poses and the even type of up-/down-sampling is preserved globally. Since right
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Figure 4.4: Figure presenting Theorem 9. Five cases of division of the input signal x

are shown. There is always a division of a pair of segments between samples 515 and

516, but the divisions of the preceding part differs from case to case. Nevertheless,

the lengths of the related extensions of the neighboring segments are equal in all

cases.

extensions are not affected by this change, the left extension reduction cuts r(J)

down to

rred(J) = (2J − 1)(m− 2). (4.12)

The rest of the algorithm remains the same except for the r(J) substituted with

rred(J) which exhibits in several places: in the number of discarded coefficients

after forward transform rred(J − j) (and in number of the zero coefficients that are

appended back prior to the inverse transform) and thus the total number of the

coefficients containing the redundant ones (from (2.7)) is

nN
(j)
ext =

⌊
len(nxext)2

−j + (2−j − 1)(m− 2)
⌋
. (4.13)

The length of the segment overlap after the reconstruction is also equal to rred(J).

In fact, the real segment overlap (meaning the number of nonzero samples within

the r(J) ones at the beginning of the reconstructed segment) was always rred(J)

since the even upsampling adds a zero to the beginning at each level prior to the

convolution, which is propagated through the iterations of the synthesis filter bank.

There is but one exception to this rule: the right extension of the last segment

remains r(J) and therefore also the number of the discarded coefficients from the

right remains r(J − j).

Examples of the modification for both forward and inverse SegDWT are shown

in fig. B.7a and fig. B.7c respectively.
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4.1.4 Right extension removal

The original algorithm with its possible nonzero right extension(s) have two disad-

vantages

• It violates causality and makes it hard to be used directly in the real-time

setup.

• The right extension aligning the right border to the next multiple of 2J causes

the reconstructed segment to be aligned as well. This means that the segment

borders of the input signal and the reconstructed signal do not match.

Regarding the first drawback, the original algorithm employs a delay of the process-

ing by whole next segment, but this additional delay could be unacceptable. Another

approach could be the employment of the “negative” right extension in a sense that

the right border of the segment would be aligned with the lesser multiple of 2J and

the remaining samples would be encompassed into the left extension of the following

segment. However, these approaches are both “workarounds” and do not solve the

second drawback.

Regardless to this, the idea of the “negative” extension is worth describing for

the coefficient alignment is not impaired and the algorithm complexity does not

increase. It is clear that the number of the remaining samples after aligning with

the lesser multiple of 2J is (nS mod 2J) and thus the right extension is a negative

number
nSRneg = −(nS mod 2J), (4.14)

which leads to the necessary left extension

nSLneg = rred(J) + (nS mod 2J). (4.15)

The negative right extension is also a special case of the algorithm modification

described in sec. 4.1.1, where k = −1 in (4.9).

To attack the second drawback, it is necessary to modify the algorithm so that

no 2J -alignment is needed and therefore neither is the right extension. In this setup,

considerable modifications of the main formulas need to be done.

First, the formulas for r(J) and
nSL become the same (since the right extension

is always zero)
nSLnoright = rred(J) + (nS mod 2J) (4.16)

If (nS mod 2J) = 0, the right segment border is already aligned; the extension has to

be increased accordingly if it is not. Note that the worst case is (nS mod 2J) = 2J−1

which leads us back to
nSLnoright = r(J).

Second, since the segment’s right border is no longer aligned, the number of

coefficients which belong to actual segment changes at each level of decomposition.
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Let this value be denoted as
nSN

(j)
coef (similarly as in (2.9)). It is derived using indexes

of coefficients belonging to the given segment (starting with nS, for n = 0, . . . , N−1).

The number of coefficients, or the index of the first coefficient belonging to the given

segment starting with zero at level j in the segment starting at index nS = nS(0) is

given by

nS(j) =

⌊
nS(0)

2j

⌋
, (4.17)

but the last segment demands a different treatment due to the expansivity of the

DWT. Let NS(0) = len(x) denote a non-existing segment following the last one, than

for other j using (4.1) we can write

NS(j) =

⌊
NS(j−1) +m− 1

2

⌋
=
⌊

NS2−j + (1− 2−j)(m− 1)
⌋
. (4.18)

The number of coefficients is then

nSN
(j)
coef = n+1S(j) − nS(j) (4.19)

in the segment starting with nS. The number of the detail coefficients at level j

that have to be discarded from the beginning of the coefficient vectors after forward

transform is equal to

nSN
(j)
disc = rred(J − j) +

⌊
(nS mod 2J)

2j

⌋
, (4.20)

therefore prior to the coefficient discarding there are

nSN
(j)
ext =

nSN
(j)
disc +

nSN
(j)
coef (4.21)

coefficients.

And, lastly, the calculated segment overlap after reconstruction is
nSLnoright.

Examples of modification for both the forward and the inverse SegDWT are

shown in fig. B.7b and fig. B.7d respectively. An additional example of the algorithm

modification usage at concrete signal is shown in fig. B.2 and B.3.

Segment length limitation It makes sense to define the minimum segment

length smin allowing the SegDWT algorithm to be carried out as it was described so

far. It turns out, that the SegDWT algorithm needs the segment to contain at least

one coefficient at the topmost level J , which limits the smin to be

smin ≥ 2J . (4.22)

On one hand, this limitation can seem restricting, but on the other hand the neces-

sary (and induced) extensions are approximately m−1 times longer than the minimal

allowed segment length and the shorter the segments the higher the computational

overhead.
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New SegDWT formulation At this point, the algorithm is considered to be

“maximally” general. Since the original algorithm description (alg. 6 and alg. 7)

is somewhat obsolete now, the description of the new SegDWT algorithm follows.

For simplicity, at least two segments are to be processed N > 1 and smin ≥ r(J)

is assumed to limit the extensions to reach just to the directly adjacent segments.

Also the reconstructed signal x̂ is delayed by r(J) samples (for it is maximal possible
nSLnoright). The example of this setup is shown in fig. 4.6 (without the initial delay

in fig. 4.5).

Algorithm 10:[SegDWT analysis v. 1.1 – no right extensions]

Let be given: g,h of length m, J , input signal x divided into N > 1 segments
0x,1 x,2 x, . . . , N−1x. Zero padding is considered whenever segment extension reaches

outside of the input signal x support.

One segment analysis:

For n = 0, . . . , N − 1 repeat:

1. Read segment nx and extend it from left by
nSLnoright samples from the pre-

vious segment.

2. If n = N − 1, the current segment is the last one, extend it from the right by

r(J) zero samples.

3. Calculate the DWT of depth J from the extended current segment using the

algorithm 4 omitting step 2(a) (OLS-type convolution with odd type down-

sampling).

4. Modify the vectors containing the wavelet coefficients by trimming off a certain

number of redundant coefficients from the left side, specifically: at the level j,

j = 1, 2, . . . , J − 1 trim off
nSN

(j)
disc coefficients.

5. If n = N − 1, trim off the vectors in the same manner as in the previous step

but this time the number of trimmed coefficients is r(J − j) and the trimming

is performed from the right.

6. Store the result as na(J), nd(J), nd(J−1), . . . , nd(1).

Algorithm 11:[SegDWT synthesis v. 1.1 – no right extensions]

Let be given: wavelet reconstruction filters g̃ and h̃ of lengths m, J , nS for all

segments 0x̂, 1x̂, 2x̂, . . . , N−1x̂ to be reconstructed. The reconstructed segments do

not have to be equal to the analyzed ones if respective coefficients are available. For

storing the overlap, a buffer of length r(J) is used.

One segment synthesis:

For n = 0, . . . , N − 1 repeat:

1. Read respective coefficient vectors na(J),nd(J),nd(J−1), . . . ,nd(1) according to

the reconstructed segment nx̂.
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2. Extend the detail coefficients: at the level j, j = 1, . . . , J − 1, append
nSN

(j)
disc

zero coefficients from the left side.

3. Compute the inverse transform of depth J using Algorithm 5 omitting the

cropping part (OLA-type convolution, odd upsampling).

4. If n 6= 0, add samples from the buffer to the current inverted segment:

(a) Add last
nSLnoright samples from the buffer to the first respective samples

of the current segment.

(b) Append remaining r(J)−
nSLnoright first samples from the buffer from the

left side of the current segment.

5. If n 6= N−1, store r(J) last samples of nx̂ in the buffer, append the remaining

samples to the output.

Else Append the whole inversion to the output.

6. The output (a segment of a time-domain signal) is now complete and prepared

to be “sent”.

4.2 Exploiting consecutive order of segments

One of the assumptions one can benefit from when seeking a way to optimize the

SegDWT algorithm is the consecutive order of the segments (i.e. the real-time

case). It can be safely presumed that both unprocessed and processed previous

wavelet coefficients are available. The necessary overlaps for the SegDWT analysis

can then be derived directly in wavelet domain and thus reducing the computational

and mainly the memory complexity (from exponential to linear dependence on J).

The SegDWT synthesis with overlaps in the wavelet domain does not bring such

computational reduction and the overlap handling becomes complex enough not to

be beneficial in the practical implementation.

4.2.1 SegDWT analysis with overlaps in wavelet domain

The algorithm clearly performs redundant computations whenever segments are an-

alyzed (forward transformed) in the consecutive order i.e. in real-time setting. Even

though it might not be apparent at the first glance, there are
nSN

(j)
disc (4.20) foremost

approximation coefficients at levels j = 1, . . . , J − 1 calculated redundantly for they

were already calculated during the transformation of the previous segment. Since

approximation coefficients of the previous segments can be buffered, the left exten-

sion of the actual segment can be carried out directly at each level of decomposition

as if OLS convolution (fig. 2.5) was done at each level but the number of influencing

samples may vary. The length of the extension of approximation coefficient at levels
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j = 0, . . . , J − 1 is m− 1 or m− 2. The exact value depends on the position of the

dividing line between segments (index nS) so that

nSL
(j)
noright = m− 2 + (nS(j) mod 2) = m− 2 +

(⌊nS

2j

⌋
mod 2

)
, (4.23)

while the OLS convolution and the odd type subsampling are preserved and no

additional coefficient discarding is necessary except for the last segment, which is

extended from the right side by r(J) samples like in the original algorithm, and

an appropriate coefficient discarding from the right side takes place.

Example of the algorithm is shown in fig. B.9.

4.3 Complementary methods and offline process-

ing

So far, the modifications have not impaired causality (except for the possible 2J

samples exchange between extensions) and the overlap-save SegDWT analysis en-

sured that the received coefficients were fully calculated (i.e. no overlap-add type

overlaps in the wavelet domain after the forward transform). Also the purpose of

the algorithm so far was to perform the analysis, to allow possible coefficient modi-

fications and then to perform the synthesis of the given segment (with some overlap

in the time or the wavelet domain). The algorithm however can be also used for

segmentwise wavelet analysis only when the output comprises of vectors of wavelet

coefficients of the whole signal and, similarly, it can be used for the segmentwise

synthesis, when a whole signal wavelet domain representation of a signal is avail-

able. Therefore the causality restriction can be removed but on the other hand, the

requirement for the arbitrary order of the segment processing may rise up.

Regarding the off-line segmented processing, the idea of a single-level DWT

at a time comes to a play. Since the entire signal (or the whole signal wavelet

transform) is available, the single-level segmented DWT (or inverse DWT) can be

done at a time and the division into segments at each level of decomposition can

be treated individually. Conveniently, the necessary overlaps from sec. 4.2 can be

reused.

The complementary methods, presented further, form alternatives in both real-

and non-real-time cases. The methods are derived for arbitrary segment lengths

(and dividing lines), but the formulas are greatly simplified, when 2J segment border

alignment is held, which can be easily done in the offline case.
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4.3.1 Overlap-Add for SegDWT analysis

There are several changes when compared to the OLS analysis, which is employed

in the original algorithm:

• Extensions to neighboring segments are no longer used and the OLA type

of convolution is employed. However, when calculating coefficients at level

j ≥ 1 the downsampling type is chosen with respect to nS(j−1). An odd

downsampling is used when nS(j−1) is odd and vice versa.

• After the wavelet analysis, the number of the wavelet coefficients at each level

j produced this way can be calculated using formula (4.19) but taking the

current segment as the last one (n+ 1 = N). This mean, that there are

nSR
(j)
OLA =

⌊
r(j) + (nS mod 2J)

2j

⌋
−

⌊
(nS mod 2J)

2j

⌋
(4.24)

more coefficients than there would be if the current segment were not con-

sidered as last. These coefficients form overlaps to the respective vectors of

coefficients belonging to the following segment. Again, the formula is greatly

simplified when (nS mod 2J) = 0:

nSR
(j)
OLA =

⌊
r(j)

2j

⌋
. (4.25)

An example is shown in fig. B.8a.

The values of these coefficients are not yet fully calculated and thus cannot be

processed non-linearly and used for the inverse transform. Linear operations

are allowed (multiplication, equal value coefficient shift) as long as as the

machine precision is not an issue (the values of the tailing coefficients at the

higher levels are calculated using the incomplete ones from the lower levels).

On the other hand, carefully choosing and processing the complete wavelet

coefficients is allowed as well as the inverse transform using just these coeffi-

cients. However, the idea will not be developed further because it can become

cumbersome to deal with in practice especially when the overlap lengths (pro-

jected to the time domain) become comparable to segment lengths.

4.3.2 Overlap-Save for SegDWT synthesis

After the segment n reconstruction using the OLA synthesis (like in the original al-

gorithm), there are
n+1SLnoright last samples, which are not fully calculated. The goal

of OLS synthesis is to fully reconstruct all segment samples which were analyzed

(prior to extension) with no overlap. Contrary to the convention this means that the

coefficient vectors belonging to actual segment have to be extended from the right
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side using coefficients belonging to the following segment and thus violating causal-

ity. The number of these coefficients is the same as in (4.24). No zero coefficients are

appended and OLS type of convolution is used. Again, when calculating coefficients

at level j, the upsampling type depends on the nS(j) in the similar manner like in

the previous section: the odd type upsampling is used when nS(j) is odd and vice

versa.

An example is shown in fig. B.8c.

4.4 Region of Interest SegDWT

In the following paragraphs, a new promising combination of the OLS methods for

analysis and synthesis is discussed. Recall that the original algorithm uses overlap-

save for analysis and overlap-add for synthesis. Because of using the OLS analysis

and synthesis it is possible to process (analyze and reconstruct) an arbitrarily chosen

segment while no overlap after reconstruction is needed.

This approach also answers the question stated in [50] asking which wavelet

coefficients participate in exact reconstruction of the arbitrarily chosen rectangle

ROI. The number of such affected coefficients is clearly higher than the OLS analysis

SegDWT algorithm produces.

OLS analysis and OLS synthesis In this setup, the wavelet coefficients exten-

sion necessary for the synthesis OLS needs to be calculated as part of the analysis

step. Naturally it requires an additional right extension of the analyzed segment in

turn and therefore the causality is violated. The length of the right extension in

the input samples is given by the number of coefficients in the topmost level (J).

Supplying j = J into (4.24) results in

nSR
(J)
OLS =

⌊
r(J) + (nS mod 2J)

2J

⌋
, (4.26)

which represents number of the additional coefficients at level J . Mapping them

back to the right extension at level j = 0 result into

nSR
(0)
OLS =

⌊
r(J) + (nS mod 2J)

2J

⌋
2J − (nS mod 2J). (4.27)

Again, the formula is greatly simplified when (nS mod 2J) = 0:

nSR
(0)
OLS =

⌊
r(J)

2J

⌋
2J . (4.28)

The processed segment n is therefore extended from both sides by
nSLnoright samples

from the left and by
n+1SROLS from the right.
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The extended segment is then OLS-analyzed as the original algorithm is, but

an additional right coefficient vector cropping is necessary. The number of the

cropped coefficients is given by
nSN

(j)
coef from (4.19) (as if the segment was the last

one) subtracted from the total number of the calculated coefficients after cropping

them from the left side

nSN
(j)
discright =

nSN
(j)
extright −

nSN
(j)
coef (4.29)

where
nSN

(j)
extright =


nS + ns+

n+1SR
(j)
OLS

2j

− nS(j). (4.30)

Knowing the lengths of the wavelet coefficient vectors, the analysis is done as de-

scribed in sec. 4.1.4, the synthesis as described in sec. 4.3.2.

An example is shown in fig. B.8b and B.8d.
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Figure 4.5: SegDWT algorithm modification demonstration example. The setup is like in the example in fig. 2.8 (J = 3, m = 4)

but the lengths of the segments vary slightly. Modifications from section 4.1.4 regarding the removal of the right extension are

considered. The segment extensions are calculated using eq. (4.16) and the number of discarded (and appended back as zeros during

inverse transform) using eq. (4.20). Note the ends of the analyzed and the reconstructed segment is to be aligned.
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Figure 4.6: SegDWT algorithm modification example in the real-time setup. The setting and the extension lengths are the same as

in fig. 4.5, but the reconstruction is delayed by r(3) = 21. This is equal to the longest possible segment overlap and therefore some

reconstructed segments are shifted accordingly.
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5 SEGMENTED LIFTING WAVELET

TRANSFORM

In this chapter, a novel algorithm of a segmented computation of a LWT is proposed,

called Segmented Lifting Wavelet transform – SegLWT1. The main idea is similar

to the SegDWT algorithm. The forward transform:

1. Read a segment from the input, calculate its proper left and right extensions

and read samples according to them.

2. Perform the LWT of the extended segment.

3. Crop the redundant samples in each level of decomposition from both sides.

Repeat these steps until all samples are processed. The fair generality of the algo-

rithm lies in choice of the segment lengths, which are not restricted to the power of

two and can be chosen arbitrarily (up to some minimal length) and can even differ

from each other. The inverse transform is similar:

1. Read the corresponding sets of coefficients and extend them from both sides

with zeros.

2. Perform the inverse LWT.

3. Place the segment to the correct position (within the output), add overlaps to

the neighboring segments.

Again, repeat these steps until all samples are processed. The reconstructed sig-

nal does not suffer from the border distortion as it would when no overlaps were

exploited.

The LWT differ from the DWT especially in the possibility of the calculations to

be carried out in-place and in the number of elementary operations which is reduced

by about a half. Also the lifting scheme provides a richer family of wavelets, since

every wavelet filter bank can be transformed into the lifting scheme and in addition

the invertible lifting transform can be designed directly as the lifting scheme does

not have an equivalent wavelet filter bank representation.

Preliminaries Let us revise the notation: the x is input signal, the x̂ recon-

structed signal, a(j),d(j) where j = 0, 1, 2, . . . , J are approximation (coarse) resp.

detail (fine) coefficients and a(0) = x. Symbol nx, n = 0, 1, 2, . . . denotes the

segment n, na(j), nd(j) denote approximation and detail coefficients of segment n

accordingly. The length of the signal is given by len(x). Equivalently, every signal

(or set of coefficients) can be understood as column vectors in RN , where N is the

signal length. To address a particular sample (coefficient), square brackets are used,

e.g. x[n], n = 0, 1, 2, . . . or to choose set of samples x[k]k∈I. Clearly, x[k] 6= nx[k] for

1Publication related to this chapter is [4].
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n > 0. nS denotes the first index of the segment n in the global indexing x[nS] = nx[0]

and nx[k] = x[nS+k] for k = 0, 1, 2, . . . , len(nx)− 1. Further, several operations are

used ⌊r⌋ , ⌈r⌉ to round r ∈ R to the nearest lower resp. greater integer, indicator

functions odd(n), even(n) return 1 when n is odd, even and 0 otherwise. Similarly,

the indicator function pow2p(n) returns 1 when n = 2p, and 0 otherwise. The result

of the indicator function is negated by bar, i.e. odd(n) = even(n). The indicator

function applied to signals chooses samples at indexes with indicator function equal

to 1 e.g. y = pow2p(x) = x[k]k∈Z∧pow2p(k)=1 and stack them together forming a new

vector.

Lifting scheme is build upon splitting samples to odd and even ones, therefore

xE = even(x) = x[2n]n∈Z, xO = odd(x) = x[2n+ 1]n∈Z, but to preserve the correct

global division of samples even in segments, the starting index must be taken into

account i.e. nxO = odd(nx) = x[nS + odd(nS) + 2n]n∈Z and nxE = even(nx) =

x[nS + even(nS) + 2n]n∈Z.

The lifting scheme [24, 31] maintains all the coefficients a(j),d(j), j > 0 inter-

leaved in vector x when computed in-place, so x also holds the intermediate results.

After transforming the whole signal, the coefficients are interleaved in a way that

a(j) = pow2j(x) and d(j) = pow2j(x[k + 2j−1]k∈Z). Given segment nx with the

first index nS, it is crucial to know indexes of all interleaved na(j), nd(j), j > 0

from the global indexing point of view: na(j) = pow2j(x[k +
⌈

nS
2j

⌉
2j]k∈Z) and

nd(j) = pow2j(x[k+
⌈

nS
2j −

1
2

⌉
2j + 2j−1]k∈Z) as the nS(j) =

⌈
nS
2j

⌉
denotes first approx-

imation coefficient at j level indexing point of view (compare with DWT coefficient

indexing alignment (4.17)).

The lifting scheme [24, 31] consists of four steps: split, predict, update and scale,

see fig. 5.2 for one stage forward (left) and inverse (right) transform. The inverse

transform part contains the same steps as the forward transform part in reverse

order and with minus signs. Operators P ,U are known to be Laurent polynomials

after the Z-transform which can have both positive and negative exponents. For

the purposes of our algorithm, we regard P ,U as signals (row vectors) containing

coefficients of Laurent polynomial supplemented with zeros for missing exponents

between the lowest and the highest one. Accordingly we define supp(P ) as a set of

all exponents between the smallest and the greatest ones.

The lifting steps are the following:

1. Split – splits samples to odd and even ones

2. Predict – combines several even samples and adds the result to the actual

odd sample. This can be described by

a
(j)
O [n]← a

(j)
O [n] +

∑

k∈supp(P )

P [k]a
(j)
E [n+ k]. (5.1)
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3. Update – combines several odd samples and adds the result to the actual

even sample

a
(j)
E [n]← a

(j)
E [n] +

∑

k∈supp(U )

U [k]a
(j)
O [n+ k]. (5.2)

4. Scale – scales each sample by a given factor K or 1/K.

The number of the lifting update and predict steps depends on the actual factor-

ization. Additional levels of decomposition can be achieved when using the scheme

iteratively on the output a(j+1). The maximal desired level is denoted as J as in

DWT and since the number of samples halves with each iteration (rounded up), the

maximal reasonable Jmax, for which there are at least two samples in a(J−1) (to get

at least one sample in each a(J) and d(J)).

5.1 Supporting algorithms

5.1.1 Lifting scheme and neighboring segments

From now on, let us consider the neighboring segments n and (n+ 1). Accordingly,

the left extension of (n + 1) segment is denoted by n+1L and the right extension of

segment n is nR. These extensions depend on the level of decomposition J and on

the type of the lifting scheme (lifting steps count, type, values). First, the exten-

sions to compute a single level (from j to j + 1) LWT need to be established. Since

lifting schemes factorizations may differ in number of lifting steps and their Laurent

polynomials, we chose an algorithmic approach:

Algorithm 12:[Determination of extensions for one level analysis]

Given: lifting scheme, segments n and (n + 1), index of the first approximation

coefficient of (n + 1) segment at level j: n+1S(j). To be determined: the right and

the left extension from j to (j+1) level nR(j) and n+1L(j) (for clarity, front superscripts

will be omitted in the following text)

Set R(j) = 0 and L(j) = 0. For all the predict and the update lifting steps taken

in the reverse order, repeat:

1. Determine the type (U or P ) and the maximal (emax) and the minimal (emin)

exponent of the current step.

2. If the current step is predict P :

(a) If emin ≤ 0 then L(j) ← L(j) − 2emin + odd(S(j) − L(j))

(b) If emax > 0 then R(j) ← R(j) + 2emax − 2 + odd(S(j) − 1 +R(j))

3. If the current step is update U :

(a) If emin < 0 then L(j) ← L(j) − 2emin − 1− odd(S(j) − L(j))

(b) If emax ≥ 0 then R(j) ← R(j) + 2emax + 1− odd(S(j) − 1 +R(j))
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Figure 5.1: Example 1 graphically in detail.
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Figure 5.2: One stage of a lifting scheme. Left part: forward lifting, Right part: inverse lifting
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Applying this algorithm iteratively as more levels of decomposition are needed,

the algorithm for nR and n+1L can be stated:

Algorithm 13:[Determination of extensions for J level analysis]

Given: lifting scheme, segments n and (n + 1), index of the first sample of (n + 1)

segment in the global indexing point of view : n+1S. To be determined: the right

and the left extension nR and n+1L. In addition, let us denote the index of the first

approximation coefficient at level j of segment n + 1 after left extension n+1S
(j)
L and

similarly last approximation coefficient of segment n as nS
(j)
R . Again, the front

superscripts will be omitted in further description.

Set S
(J)
R = 0 and S

(J)
L = ∞. For all levels of the analysis j from J − 1 up to 0,

repeat:

1. Determine Ŝ
(j)
R = max(S(j) − 1, 2S

(j+1)
R ) and Ŝ

(j)
L = min(S(j), 2S

(j+1)
L ).

2. Calculate S
(j)
R = Ŝ

(j)
R + R(j) and S

(j)
L = Ŝ

(j)
L − L

(j) via utilizing Algorithm 12

taking Ŝ
(j)
L as the beginning of the (n + 1) for the left extension and Ŝ

(j)
R + 1

as the beginning of the (n+ 1) segment for the right extension.

Then nR = nR(0) − n+1S + 1 and n+1L = n+1S − n+1L(0).

The left and the right extension can trade-off integer multiples of 2J samples the

same way as in SegDWT
nR← nR + k2J , (5.3)

n+1L← n+1L− k2J , (5.4)

as long as nR, n+1L ≥ 0 holds for chosen integer k.

split

b

b

a(j)

U 1

a(j+1)

d(j+1)

a
(j)
E

a
(j)
O

K

1
K

P 1

b

U 2

Figure 5.3: Lifting scheme for the wavelet cdf3.1 with Laurent polynomials U 1 =

−1
3
z−1, P 1 = −3

8
z − 9

8
, U 2 = 4

9
, K

.
= 2.1213

Example 14: Let us take lifting scheme for wavelet cdf3.1 see fig. 5.3. The desired

depth of the analysis is J = 3. The signal x, len(x) = 32 is divided into two segments
0x,1 x with 0S = 0 and 1S = 15 and extensions 0R and 1L are to be evaluated.

According to Algorithm 13, we start with level 2 (J − 1 = 2):

1. j = 2: 1S(2) =
⌈

1S
22

⌉
= 4, 0Ŝ

(2)
R = 3, 1Ŝ

(2)
L = 4. Via Algorithm 12, 0R(2) and 1L(2)

are enumerated:
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(a) U 2 is the last lifting step, emin = emax = 0. According to step 3b in

Algorithm 12, 0R(2) = 0 + 0 + 1− 1 = 0.

(b) P 1 is the second lifting step, emin = 0, emax = 1. According to steps 2a

and 2b in Algorithm 12: 1L(2) = 0+0+0 = 0 and 0R(2) = 0+2−2+1 = 1.

(c) U 1 is the first lifting step, emin, emax = −1. According to step 3a in

Algorithm 12, 1L(2) = 0 + 2− 1− 0 = 1.

So we have 0R(2) = 1, 1L(2) = 1 and 0S
(2)
R = 4, 1S

(2)
L = 3.

2. j = 1: 1S(2) =
⌈

1S
2

⌉
= 8, 0Ŝ

(1)
R = 8, 1Ŝ

(1)
L = 6. Extensions 0R(1), 1L(1) are defined

similarly as in the previous step: 0R(1) = 2, 1L(1) = 1 and 0S
(1)
R = 10, 1S

(1)
L = 5.

3. j = 0: Similarly, 1S(0) = 15, 0Ŝ
(0)
R = 20, 1Ŝ

(0)
L = 10, Extensions 0R(0) =

2, 1L(0) = 1 and 0S
(0)
R = 22, 1S

(0)
L = 9.

Extensions for cdf3.1 are 0R = 22− 15 + 1 = 8 and 1L = 15− 9 = 6. The example

is depicted in fig 5.1. Fig. 5.4 shows all (two) possible extensions parametrized by

(5.3), (5.4).

1xext

0 15 22

9 15 31

0xext

1xext

0 14

1 15 31

0xext

a)

b)

Figure 5.4: Possible extensions derived from Example 14. Equations (5.3), (5.4)

were used with k = 0 (a) and k = −1 (b)

5.2 The Main Algorithm

This section contains a full description of the forward and the inverse segmented

wavelet transform via the lifting scheme. When extending segments, one can slide

of the support of the input signal. In this case, a zero padding is considered for

the sake of simplicity, but the extension for other types of boundary treatment is

straightforward.

Algorithm 15:[SegLWT analysis of one segment]

Given: segment n, index of the first sample in the segment in the global indexing

point of view, nS, and the last one (n+1S − 1), desired level of decomposition J ,

lifting scheme, parameter k from parametrized extensions (5.3), (5.4) of neighboring

segments already transformed. Output: (J + 1) interleaved sets of coefficients na(J)

and nd(j) for j = 1, . . . , J .
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1. Via Algorithm 13 and formulas (5.3), (5.4), determine left and right extensions

of segment n: To get the proper left extension, apply Algorithm 13 to (n− 1)

and n segments, in (5.4) use k from the previous segment if such exists, choose

and store one in other case. To get the right extension apply Algorithm 13

to n and (n + 1) segments and in (5.3) use k from the next segment if such

exists, otherwise choose and store some k.

2. Perform LWT of the extended segment in-place.

3. Crop the same amount of samples as was (or would be) added from both sides

for k = 0 in (5.3), (5.4).

4. Optionally: Deinterleave coefficients to get sets na(J) and nd(j).

Algorithm 16:[SegLWT synthesis of one segment]

Given: Interleaved sets of coefficients na(J) and nd(j) for j = 1, . . . , J , global index

of the first sample in segment nS, lifting scheme. Output: segment nx̂, extended

from both sides (containing overlaps to neighboring segments).

1. Extend interleaved coefficients from both sides with zeros as in Algorithm 15,

though the extensions are computed differently now. Algorithm 13 is followed,

but for several changes. The signs in step 2 are switched when computing nS
(j)
R

and n+1S
(j)
L , nS

(J)
R and n+1S

(J)
L switch values and also the resulting nR and n+1L

switch values and have an opposing sign in addition.

2. Perform inverse LWT on the zero-extended segments.

3. Add the resulting segment nx̂ of length len(n̂x) = nL + len(nx) + nR to the

output signal starting at the global index nS
(0)
L = nS − nL.

5.2.1 SegLWT algorithm in real-time

According to (5.3) the minimum right extension can be nRmin = (nR mod 2J) ∈

{0, . . . , 2J − 1}. It depends on the value of nS but also on the concrete structure of

the lifting scheme. In this section, a modification of the algorithm is proposed not

requiring a right extension in a sense that none of the samples from the following

segment are needed. This notion greatly simplifies the practical use of the proposed

algorithm.

The idea is similar to the notion of the “negative” right extension from eq. (4.14).

The situation is still the same (two neighboring segments n and (n+1) as in section

5.1.1) but in addition, we are not allowed to use any samples from (n + 1) when

working with segment n. Let us assume the nRmin > 0. The restriction for eq. (5.3),

(5.4) (nR, n+1L) ≥ 0 can be overcome assuming a slight modification of the proposed

algorithm. In the discussed case, we are interested in the case nR < 0 which can be

interpreted as that there are 2J − nRmin samples at the end of the n segment, which
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are not processed at the same time as segment n. These samples are encompassed

in the left extension of the (n+ 1) segment. This left extension is then given by

n+1Lnoright = n+1L+
⌈nR

2J

⌉
2J (5.5)

Example 17: Let us assume the same setup as in Example 1: 1S = 15, J = 3,
0R = 8 and thus 0Rmin = (0R mod 23) = 0 see fig. 5.4 b). Extensions for every possible
1S = 1, . . . , 31 are shown in the fig. 5.5. Let us leave aside the impracticality of the

extending segments so that after the extension, one or both of them ale longer than

the whole signal (clearly there are limitations). Periodicity 2J = 8 of the extensions

are clearly visible, and 0Rmin = 0 for 1S = p2J − 1 for some integer p, however

the indexes for which the 0Rmin = 0 differ for different lifting schemes, only the

periodicity remains.

After performing LWT of the actual segment n, nL samples are discarded from

the left and nR from the right side. The resulting coefficients can be processed (e.g.

thresholded) prior to the inverse LWT.

Inverse SegLWT in real-time setting After the coefficient cropping, the index
nS actually changes (to nSinv). Also values nRinv and n+1Linv have to be recalculated

using
n+1Sinv = n+1S −

⌈nR

2J

⌉
2J (5.6)

Then, according to the alg. 16, nx̂ contain overlaps both to the next and the to

the previous segment. So the last nRinv + n+1Linv samples should be held for they

will be added to the first respective samples in the following segment. The real-

time SegLWT is depicted in fig. 5.6 for two arbitrary segments assuming len(nx)≫
nR + n+1L. It is shown that the process exhibits delay of n+1S − n+1Sinv + n+1Linv

samples.

64



5 10 15 20 25 30
0

10

20

5 10 15 20 25 30
0

10

20

1S →

1S →

n R
n

+
1 L

(a)

5 10 15 20 25 30
0

10

20

5 10 15 20 25 30
0

5

10

1S →

1S →

n R
m

in
n

+
1 L

m
a
x

(b)

5 10 15 20 25 30
0

10

20

30

1S →

n
+

1 L
n

o
ri

g
h
t

(c)

Figure 5.5: Extensions from Example , 1S = 1, . . . , 31, (a) Left (nR) and right (n+1L)

extensions using alg. 15 (b) Maximum left extensions n+1Lmax and minimum right

extensions nRmin. (c) Left extensions (n+1Lnoright) only using formula (5.5).
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Figure 5.6: Depiction of the real-time SLWT for two segments nx and n+1x divided at index n+1S. a) Extensions nR, n+1L calculated

using alg. 15. b) Extensions nRmin,
n+1Lmax calculated using eq. (5.3), (5.4). c) Only left extension n+1Lnoright using (5.5). d) The

segments contain interleaved wavelet coefficients after cropping. nR samples were discarded from the n-th segment from the right,
n+1L samples were discarded from segment (n + 1) from the left. e) The segments extended by nRinv, n+1Linv zeros respectively. f)

The segments after inverse LWT. The last nRinv + n+1Linv samples of segment n are “overlap”, so they are added to the same number

of the first samples of the segment (n+ 1). g) The segments after adding the overlap.
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6 MULTIDIMENSIONAL EXTENSIONS

In this chapter, the extension of the segmented algorithm to the multidimensional

isotropic discrete wavelet transform is presented. The separability property ensures

that the principles from the previous chapters are valid even for multidimensional

signals. For simplicity, the consecutive order of segments along the time dimension

(if present as one of the dimensions) will not be exploited. The starting point is the

maximally general algorithm from sec. 4.1 with a left extension only. The input of

the multidimensional SegDWT is then an arbitrary box-shaped segment since the

segment dimensions can differ in each direction. Since the segment order in each

dimension cannot be defined unambiguously, the S = (S[0], S[1], . . . , S[D− 1]), de-

note left, upper, (near,. . . ) corner of the segment and s = (s[0], s[1], . . . , s[D − 1])

its dimensions, where D denotes the number of the input signal dimensions. Accord-

ingly, the SL = (S[0]Lnoright,
S[1]Lnoright, . . . ,

S[D−1]Lnoright) denote left, top (front,. . . )

extension (according to (4.16)) of the segment starting with S. Extended segment

dimensions are then sext = (L[0]+s[0], L[1]+s[1], . . . , L[D−1]+s[D−1]). One level

isotropic DWT of one segment consists of a multiple one-dimensional DWT in each

direction at a time. After that, there are additional 2D − 1 detail coefficient vectors

in addition to one approximation coefficient vector sharing the same dimensions.

The dimensions at level j can be derived similarly as in (4.19) taking a direction at

a time.

In addition to the new SegDWT formulation (alg. 10 and alg. 11), the two pre-

sented modifications seem to be suitable for the multidimensional signals: Overlap-

Save for SegDWT synthesis and subsequently the ROI SegDWT.

An example of the two-dimensional SegDWT algorithm usage on the real image

is in fig. B.1.
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7 APPLICATIONS

The chapter introduces two applications using SegDWT algorithm serving as a proof-

of-concept.

The first application is VST effect plugin that allows custom real-time wavelet

coefficient processing. The VST (Virtual Studio Technology) is a product of the

Steinberg company which provides an interface for integrating software audio syn-

thesizer and effect plugins with audio editors and recording systems. To run a plugin,

a host application is needed to feed the plugin with audio data and processing the

output. Since VST technology is nowadays a standard in the digital audio processing

field, there are many such host application available. We used two host applications

for the (succesful) testing of the created plugin module. The first one was DSOUND

GT-Player (EDU) Express, version 2.6 Feb 17 2006. This host is simple enough and

great for debugging, etc. It is no longer supported, but it is downloadable from the

archive [51]. The second host was Cubase 4 (EDU), version 4.5.2 Build 274.

The second application is an implementation of a parallel computation of DWT

of images. The actual parallelization is done by the means of the Intel Threading

Building Blocks (TBB) library framework [48]. There are other mechanisms for

computation parallelization but the TBB became popular enough to be incorporated

in the widely used computer vision OpenCV library [52].

7.1 VST plugin for Real-Time Wavelet Audio Pro-

cessing

The implementation started from the template by Dr. J. Schimmel, which is acces-

sible from URL [51]. The template is designed for creating VST plugin modules

compatible with VST 2.4 specification.

The VST plugin uses “SegDWT” library which was created in the C++ language.

The library consists of the SegDWT.h and SegDWT.lib files, whose source codes

are available at [49]. The library processes single precision data types only. Both

the forward and the inverse transforms are implemented in the FloatSegDWT class.

Wavelet filters and wavelet coefficient processor are injected into the class by means

of the FloatWfilter and IWaveletCoeffProcessor type objects, respectively. The

main public functions of the class are summarized in Listing 7.1.

Listing 7.1: Important functions from FloatSegDWT class.

class FloatSegDWT{

...

public :
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FloatSegDWT( FloatWfilter:: Type waveletType , int newJ =1);

FloatSegDWT( FloatWfilter* newWavelet , int newJ =1);

void forwardOLS(float* in ,int inLen ,float* out[], int outLen [],

unsigned long Sn=0);

void inverseOLA(float* in[], int inLen [],float* out , int outLen ,

unsigned long Sn=0);

void process(float* in , float* out , int inLen ,

unsigned long Sn =0);

void setWaveletProcessor( IWaveletCoeffProcessor* procesor_);

...

};

The class instance can be created using two constructors. The object containing

the (four) wavelet filters can be either supplied directly by a pointer or created in

the constructor according to the enumeration data type FloatWfilter::Type value.

Function forwardOLS takes the input array in and calculates wavelet the coefficient

arrays, which have to be allocated beforehand. Value Sn identifies the index of

the first sample from the global indexing point of view. Function inverseOLA is

complementary to forwardOLS. Function process initially calls forwardOLS, then

processes the function of the IWaveletCoeffProcessor object and, lastly, the in-

verseOLA.

The storage of the overlaps is handled internally. Routines for allocating memory

for arrays of wavelet coefficients are included as well.

The compiled VST plugin module is accessible through URL [49] in the ready-to-

use form of a DLL file (∼1.2 MB). It suffices to copy the file to the plugin directory

of the VST host software before the host is run.

The graphical user interface (GUI) is a simple, minimal one and consists of two

parts, see Fig. 7.1. The left part of the plugin GUI appears always the same. It

allows the user to set the global gain after the signal synthesis — Gain, choosing the

wavelet filter — Wavelet, the depth of decomposition — Depth, and the method of

processing the wavelet coefficients — Process. Wavelet filter names and filters were

adopted from the Matlab Wavelet toolbox. The depth of decomposition J is limited

by the size of the input buffer sbuf (which is controlled by the host application) so

that 2J ≤ sbuf , and at the same time, its maximum is set to J = 10.

The right part of the GUI depends on the selected Process. There are wavelet

coefficient processors bundled with the plugin by default, however they serve mainly

to “prove” the proposed algorithm. (Of course, if no modification was done to the
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Figure 7.1: VST plugin GUI when “Filter” is selected for processing the coefficients.

coefficients, the output signal would be equal to the input signal up to numerical er-

rors!) The controls at the right hand side allow setting parameters for the respective

processors. The bundled processors are:

• Default — simply copies the wavelet coefficients and leaves them intact. This

is incorporated to verify the perfect reconstruction.

• Filter — allows a multiplication of the wavelet coefficients by the specified

values. Each decomposition level is assigned its own value.

• Hard Thr — hard-thresholds each subband with a specified value, i.e., the

coefficients in absolute values smaller than the threshold are set to zero.

• Random — each coefficient in each subband is randomly perturbed. The

extend of the scattering is controlled by the specified parameters.

The number of sliders is J + 1 in all these cases, each of them linked with the

respective decomposition level. The depths go from the highest-frequency details to

the approximation coefficients when taken from the top to the bottom.

The delay of the output in comparison to the input is always equal to r(J)

regardless of the buffer size.

However, the limit of the CPU performance can be reached on some computers

when a demanding combination of parameters is set. For example, J = 10, wavelet

db10 (Daubechies 10 with m = 20), which leads to r(J) = 19456 samples of the left

extension which have to be processed in addition to the actual segment samples,

whose minimal length is restricted to sbuf ≥ 1024.

This paragraph clarifies how to add your own real-time wavelet coefficient proces-

sor into the VST (2.4) plugin, extend and adapt it to your specific needs. The cus-

tom processor can be inserted into the plugin (or, more precisely, into the SegDWT

library) by means of the Template pattern paradigm. To do this, create a class inher-

ited from the interface called IWaveletCoeffProcessor which implements all its vir-
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tual functions, see Listing 7.2. In the setUserVariables function in vst_temp.cpp

file, dynamically create the instance of your processor, create the instance of the

structure ProcessorInfo and fill the respective variables. Then append the struc-

ture object to the processorList vector.

After compiling and running the plugin in a host application, your processor

should be accessible by means of the Process slider, at a position corresponding to

its index in the processorList vector. To demonstrate how to access the individual

wavelet coefficients, we display DefaultProcessor process function implementa-

tion in Listing 7.3.

7.1.1 Convolution and down/upsampling

The convolution and the down/upsampling are realized in the time domain. The

standard two-direction cyclic buffer is exploited and the convolution and downsam-

pling are done together in a single step, for both the filters simultaneously, according

to the formulas

a(j+1) [n] =
m−1∑

k=0

a(j) [2n− k +m− 1] h[k], (7.1)

d(j+1) [n] =
m−1∑

k=0

a(j) [2n− k +m− 1] g[k], (7.2)

for n = 0, . . . ,
nSN (j)

seg − 1, j increasing from zero to J − 1, the formulas have to

be modified for the first and the last segments—they have to be treated slightly

differently. However, the last segment cannot be identified properly in the VST live

streaming audio setup.

The described process is equivalent to the “full” linear convolution followed by

cropping m − 1 samples from both sides, followed by the odd downsampling. This

way, half the operations are saved.

In a similar manner, the upsampling and the convolution in the inverse DWT

are done together in a single step, for both filters simultaneously, according to the

Listing 7.2: Structure of IWaveletCoeffProcessor interface.

class IWaveletCoeffProcessor{

public :

virtual void process(float ** in ,float ** out ,int* coefLens ,int J)=0;

virtual void setParams(float* params ,int paramLen) = 0;

virtual void getParams(float* params ,int paramLen) = 0;

};
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Listing 7.3: Demonstration of accessing wavelet coefficients

void DefaultProcessor:: process(float ** in ,float ** out ,

int* coefLens ,int J){

// temporary vaiables

float* inSubband;float* outSubband;int jTemp =0; int coefLen=0;

for( int j=1;j<=J;j++){

// initiation of temp. variables for j-level detail coefficients

jTemp = j -1;

coefLen = coefLens[jTemp ];

inSubband = in[jTemp ];

outSubband = out[jTemp ];

// iteration over j-level detail coeff.

for( int i =0;i<coefLen;i++){

/**PLACE FOR j-th level i-th DETAIL COEFFICIENT PROCESSING**/

outSubband[i] = inSubband[i];

/* ***************END ****************************************/

}

}

// initiation of temp. variables for J-level approximation coeff.

jTemp=J; coefLen=coefLens[J]; inSubband=in[J]; outSubband=out[J];

for( int i =0;i< coefLen;i++){

/**PLACE FOR i-th APPROXIMATION COEFFICIENT PROCESSING**/

outSubband[i] = inSubband[i];

/* ********END *******************************************/

}

}
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formula

a(j) [n] =

⌊m−1+(n mod 2)
2 ⌋∑

k=0

a(j+1)
[⌊
n

2

⌋
− k

]
h̃ [2k + (n mod 2)]

+

⌊m−1+(n mod 2)
2 ⌋∑

k=0

d(j+1)
[⌊
n

2

⌋
− k

]
g̃ [2k + (n mod 2)]

(7.3)

n = 0, . . . ,
nSN (j)

seg − 1 and j = J − 1, . . . , 0.

Again, the number of operations is reduced in comparison to the equivalent

calculation consisting of upsampling both a(j+1) and d(j+1), followed by a linear

convolution and the sum of the outcomes.

7.1.2 Fast convolution via FFT is not faster

Although it may seem tempting to perform the convolution and the resampling in

the frequency domain using FFT, so far our tests have shown that this approach

brings only a negligible performance increase and only in some extreme situations.

In the rest of cases, the FFT approach performs worse. Moreover, the frequency

domain filtering and the resampling bring, apart from the segment size constric-

tions, complications with implementation, and require a considerable revision of the

SegDWT algorithm. The fact that the FFT approach does not perform so well in

such situations is caused mainly by the short length of filters the wavelet filter bank

comprises (i.e. m ≤ 20) and by the relatively short segments, even after they had

been extended sext = rnoright(J) + sbuf .

We compared our implementation of the DWT analysis (forward transform only)

in the time domain with frequency domain implementation using FFTW [53] 3.3.1

default 32bit dll binary distribution using Intel C++ compiler 12.0.1 with the \03

optimization parameter. The tests were run 101 times and the median was taken as

the result, which is plotted in Fig. 7.2. The testing machine was running Windows

7 Professional 64bit on Intel(R) Core(TM) i7 CPU 960 3.2GHz. We can conclude

that the FFT implementation starts being beneficial for J ≥ 10 and m ≥ 17, since

the segment length after the (maximal) extension depends on J exponentially and

on m linearly, and it will be sext = 16368 + sbuf .
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Figure 7.2: Comparison between time domain an frequency domain forward DWT

implementations for different sequence lengths. Since the relative differences were

not affected by the choice of the depth of decomposition, J = 6 was used.
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7.2 Parallel 2D Wavelet Transform Library

The parallel implementation of the SegDWT was done in C++ and it is distributed

as a static library available at [49]. To introduce parallelism into the implementa-

tion the Intel Threading Building Blocks (TBB) library was used. TBB provides

algorithms and concepts which enable to fully exploit the possibilities of the multi-

core processors. It also provides automatic task scheduler and the automatic thread

management. For more detailed information on using TBB in image processing see

[5] or [48].

A basic concept of TBB is that tasks are recursively divided into smaller parts

and then they are processed in parallel. When processing an image, the initial

task range spans the whole image. This range is then recursively split into halves

and when the new range is small enough, it is processed. TBB manages this split-

ting automatically and even allows task stealing to achieve a load balancing between

working threads. A programmer can control the size of the smallest range by param-

eter grainsize, but if TBB decides not to split the range any more, the grainsize

does not have to be reached so grainsize is only a coarse value that define size

up to which range will not be split. Hence, the size of the segment to be processed

is not known beforehand. At this point the new algorithm enters and after each

division the extensions of the two affected segments are computed. According to the

Theorem 9 these extensions are not affected by any other division of ranges.

At this point a very important fact needs to be highlighted. Every division of the

range brings a redundancy of the computation. Obviously the number of redundant

rows or columns of the input pixels is up to r(J), which is depends on the length

of the filters m and the depth of the wavelet decomposition J , see (2.2). So it is

advisable to use as few divisions as possible, but at the same time it is important

to effectively exploit all available threads to achieve the desired speedup.

7.2.1 Testing

Via testing, we would like to establish the optimum grainsize for a given r(J) to

reach the highest speedup possible. The serial version, to which parallel versions in

different setups are compared to, is computed as if the whole image was one segment,

so there are extensions by r(J) only at the image borders. For testing purposes we

used system running Intel C2Q Q9550 (4 cores). All data types were single precision

32-bit floating points. The compiler associated with Microsoft Visual Studio 2008

was used with the \O2 optimization parameter. A median from 10 runs was taken

as a result.

Firstly, we performed several tests with 4096×4096 px image for a fixed r(5)
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and varying grainsize. It can be seen in Fig. 7.3 that the speedup is relatively

independent on the choice of grainsize, but with the increasing r(J) a bigger

grainsize is needed. Using that, the speedup for a different r(J) with an almost

optimum choice of grainsize ∼ 2r(J) is shown in Fig. 7.4.
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Figure 7.3: Speedup for increasing grainsize for different values of r(5) (31, 155,

279, 403, 527 corresponding to filters with m = 2, 6, 10, 14, 18)
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Figure 7.4: Speedup for increasing r(J) for J = 5 and m = 2, . . . , 20

We obtained another interesting result through Intel parallel Universe Portal. It

is a web service where Intel offers computing resources on a 8-Core Intel Xeon@2.80GHz

with hyperthreading (effectively 16 cores) (the service is suspended now). The tests

were performed in the following setup: image 4096×4096 px, m = 10, J = 4 leading

76



to r(J) = 135, grainsize was set to 512 in both directions. In Fig. 7.5 the scala-

bility of the speedup can be seen – that means the performance is increases with an

increasing number of cores.
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Figure 7.5: Speedup on Intel Parallel Universe

7.2.2 Software

The described implementation is distributed as a static library for 32bit OS Windows

freely under the GPLv2 license. The library and the source codes are accessible

from [49]. To use the library, it is necessary to include the header file segDTWT.h

from the include directory and set the linker to include segDTWT2D.lib from the

lib directory. The functions, which perform parallel forward and inverse wavelet

transforms are:

segDTWTfwd_32f_C1(float* i_data, int i_widthStep, float* subbands[],

int widthSteps[], int levels, Size size,

separableWavelet* w);

segDTWTinv_32f_C1(float* subbands[],int widthSteps[], float* o_data,

int o_widthStep, int levels, Size size,

separableWavelet* w);

float* i_data – pointer to the beginning of the image

int i_widthStep – distance between two consecutive rows of the image in memory

in bytes

float* subbands[] – array of pointers to the output subbands. For details see

below.
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int widthSteps[] – array of the distances between two consecutive rows in bytes

in EACH individual subband

int levels – depth of decomposition, the J variable

Size size – dimensions of the input image

typedef struct

int width;

int height;

Size;

separableWavelet* w – object defining the wavelet filters

Prior to the calling of this functions one must have separableWavelet object

prepared and also the memory for the output subbands needs to be allocated. One

of the constructors for separableWavelet class accepts the wavelet name and the

file name, where the wavelet filters definitions are located.

separableWavelet(string name="default",

const char* file = "wavelets.dat")

The wavelets.dat file is distributed with the library and it contains wavelet fil-

ters defined in MatLab wavelet toolbox, but more filters can be added keeping the

prescribed format.

ω1

ω2 (π,π)

(−π,−π)

HH1HH1

HH1HH1

HL1 HL1

LH1

LH1

HH2HH2

HH2HH2

LH2

LH2

HL2 HL2LL

Figure 7.6: Subbands labeling

The subbands[] is an array of pointers to the output subbands. The pointers are

stored in the following order: subbands[0]=HL1,[1]=HH1,[2]=LH1,[3]=HL2,[4]=HH2,

[5]=LH2 ...[last]=LL assuming the subband labeling as depicted in fig. 7.6. The

memory allocation can by done by means of the allocateSubbands function:
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allocateSubbands(float* subbands[], int widthSteps[], int level,

int filter_length_L, int filter_length_H,

Size size);

float* subbands[] – array of pointers to be filled with pointers to the subbands

int widthSteps[] – array of the distances between two consecutive rows in bytes

in EACH individual subband

int filter_length_L/H – length of the low- high-pass filter
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8 CONCLUSION

The presented thesis was devoted to the generalization of a SegDWT algorithm to

one- and multi-dimensional signals. The crucial shortcomings of the original algo-

rithm were identified and removed. In addition, several optimizations of the algo-

rithm were proposed. In particular, the necessity of the right extension of segments

was removed and the possibility of segments of different lengths was introduced.

Several novel ideas were incorporated into the SegDWT algorithm including

moving the overlaps from the time domain to the wavelet domain and thus reducing

memory complexity. Further, the idea of the ROI SegDWT was introduced. For a

chosen segment it identifies wavelet coefficients which participate on its full recon-

struction and it further determines the left and the right extension of the analyzed

segment which are necessary for the concerned coefficients calculation.

The presented novel SegLWT algorithm extends ideas of the SegDWT to the lift-

ing scheme. The main motivation was a possible reduction of the overlaps. It turned

out that the overlap lengths were strongly dependent on the actual filter bank fac-

torization (lifting scheme) which is not unique. At best, the required overlap lengths

are comparable to the SegDWT ones. However, the lifting scheme computational

advantages (in-place, math operation number reduction) still remain.

All of the proposed modifications were confirmed in the Matlab simulations.

The code with demos is accessible on the accompanied DVD and on the SegDWT

algorithm webpage [49].

Two proof-of-concept applications were created to confirm the SegDWT algo-

rithm design and its usability in the practice. That is the VST plugin for the real-

time wavelet processing of the audio signals, which provide mechanism for custom

(user-defined) wavelet coefficient processing. During the playback, no disturbing

border artifacts occurs even after strong non-linear modifications of the wavelet co-

efficients. Also the VST technology buffer sizes are host application specific, not

limited to the powers of two and can even vary during the playback. The SegDWT

algorithm presented in this thesis is designed to cope with this behavior. The second

application is the exploitation of SegDWT algorithm for the parallel implementation

of the forward and the inverse DWT of the images using Intel Threading Building

Blocks library. The advantage of the SegDWT usage in this type of application

is its ability to let the library split the pixels blocks even during the computation

execution for load balancing. It was shown that the achieved speedup is scalable

and it is proportional to the number of the working threads of the CPU. On the

other hand, the optimum minimal pixel block dimensions seem to be ∼ 2r(J). To

retain the speedup scalability the images have to be large enough.

The SegDWT algorithm is not limited to the DWT only. Any tree structured
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separable filter bank based transforms can be calculated segmentwise using SegDWT

e.g. framelets [54], complex wavelet transform CWT [55], wavelet packets and oth-

ers.

Hereafter the text sketches ideas for a future research. The segmentwise com-

putations can be extended even to the non-iterated FIR filter bank structures for

the noble identity filter bank representation has such structure. The only limit-

ing factors seem to be the lengths of the impulse responses (directly defining the

necessary overlaps) and the subsampling factor. Another possible extension of the

SegDWT could be its adaptation to non-separable wavelet-type transforms [34] of

the images and the multidimensional signals. A particular challenge lies in dealing

with non-separable subsampling patterns.
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LIST OF ABBREVIATIONS

ASIO Audio Stream Input/Output, Trademark of Steinberg Media

Technologies GmbH

BUPU Bounded Uniform Partition of Unity

CDF 9/7 Cohen-Daubechies-Feauveau 9-tap/7-tap wavelet filter bank

CUDA Compute Unified Device Architecture

db# Order # Daubechies wavelet filter bank

DWT Discrete Wavelet Transform

EZW Embedded Zero Trees

FIR Finite Impulse Response Filter

FFT Fast Fourier Transform

JPEG Joint Photographic Experts Group – image compression standard

JPEG2000 Joint Photographic Experts Group 2000 – image compression standard

LWT Lifting Wavelet Transform

MRA MultiResolution Analysis

MRI Magnetic Resonance Imaging

OLA Overlap-Add method for real-time convolution

OLS Overlap-Save method for real-time convolution

ROI Region of Interest

SegDWT Segmentwise Discrete Wavelet Transform

SegLWT Segmented Lifting Wavelet Transform

SPIHT Set Partitioning In Hierarchical Trees

URL Uniform Resource Locator

VST Virtual Studio Technology, Trademark of Steinberg Media

Technologies GmbH

WT Wavelet Transform
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LIST OF SYMBOLS AND MATH OPERATIONS

RN N -dimensional Eucleidian space.

Z,N,N0 set of integers, positive integers and non-negative integers.

ℓ2(Z) Hilberts space of sequences with finite energy.

δ[n] Dirac impulse. δ[n] = 1 for n = 0 and δ[n] = 0 otherwise.

m wavelet filers length

J depth of wavelet decomposition

D number of signal dimensions

x input signal

x̂ reconstructed signal

nx input segment

ns, s length of the input segment n. Superscript is dropped if segments

have equal lengths.

nxext extended input segment

nl input segment length including left extension

W(j) detail subspace level j

V(j) approximation subspace level j

ψ(j)
p base vector of the W(j) subspace

ϕ(j)
p base vector of the V(j) subspace

W̃(j) dual detail subspace level j

Ṽ(j) dual approximation subspace level j

ψ̃
(j)

p base vector of the W(j) subspace

ϕ̃(j)
p base vector of the V(j) subspace

gmr,hmr dilatation coefficient vectors

g̃mr, h̃mr dual dilatation coefficient vectors

a(j),d(j), c(j) approximation, detail, general coefficient vector at level j. Concrete

coefficients are denoted as a(j) [k] , d(j) [k] , c(j) [k]

g,h wavelet analysis filters

g̃, h̃ wavelet synthesis filters
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f general filter

ω angular frequency [π · rad]

H(ω), G(ω) frequency responses of the wavelet analysis filters g,h

l0, r0 variables for biorthogonal wavelet filers zero padding

na(j), nd(j) approximation and detail coefficient vectors at level j belonging to

segment n

nc(j) general coefficient vectors at level j belonging to segment n

nc
(j)
ext general coefficient vectors at level j belonging to segment n including

redundant coefficients at the beginning of the vectors

nS Index of n segment’s first sample in the global point of view. Al-

ternatively, sum of numbers of samples of all preceding segments or

number of yet “processed samples”.

nS(j) Index of n segment’s first wavelet coefficient at the level j in the

global point of view. S0
n = Sn.

nN
(j)
ext len(nc

(j)
ext)

nN
(j)
disc Number of discarded coefficient

nN
(j)
coef len(nc(j))

nR right extension of segment n
nSR right extension associated with index nS

nRmin minimal right extension of segment n

n+1Lmax maximal left extension of segment (n+ 1)

r(j) r(j) = (2j − 1)(m− 1). Returns total extension necessary for calcu-

lating one wavelet coefficient at level j. The following holds r(J) =
nR + n+1L and r(J) =

nSR +
nSL.

rred(j) rred(j) = (2j − 1)(m− 2). Reduced r(j) when odd downsampling is

considered.
nSRneg “Negative” right extension for SegDWT causal workaround.
nSLneg Left extension associated with

nSRneg.
nSLnoright Left extension for modification removing necessity of the right exten-

sion.
nSL

(j)
noright Left extension in the approximation coefficient vectors at level j for
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overlap-save analysis modification transferring extensions into the

wavelet domain.
nSN

(j)
OLA Number of approximation coefficients at level j overlapping to the

next segment for overlap-add synthesis modification transferring over-

lap to the wavelet domain.
nSR

(j)
OLA Number of overlapping coefficients at level j for overlap-add analysis

modification.
nSR

(j)
OLS Length of right extension at level j for overlap-save synthesis modi-

fication.

nN
(j)
discright Number of discarded coefficients from the right for overlap-save syn-

thesis modification.

nN
(j)
extright Number of coefficients at level j produced by overlap-save synthesis

modification after cropping the coefficient vectors from the left.

P ,U predict, update lifting step coefficient vectors

n+1L(j) left extension of the segment (n + 1) at level j for SegLWT

nR(j) Right extension of the segment n at level j for SegLWT

emin, emax Minimum, maximum exponents of the lifting scheme steps Laurent

polynomials

a
(j)
E ,a

(j)
O even, odd indexed approximation coefficients for the lifting scheme

n+1S
(j)
L Index of the leftmost coefficient of the segment n+ 1 at level j after

extending.

n+1S
(j)
R Index of the rightmost coefficient of the segment n at level j after

extending.

len(x) returns number of elements of the vector x

↑ N N -fold upsampling

↓ N N -fold downsampling

x ∗ h linear convolution.

odd(n) indicator function. Returns 1 when n = 2p for p ∈ Z, and 0 otherwise.

even(n) indicator function. Returns 1 when n = 2p + 1 for p ∈ Z, and 0

otherwise.

pow2p(n) indicator function. Returns 1 when n = 2p for p ∈ Z, and 0 otherwise.

⌈·⌉, ⌊·⌋ ceil, floor operations
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(a mod m) Modulo operation. (a mod m) = a−
⌊

a
m

⌋
m where a,m ∈ Z

〈x,y〉 Vector scalar product x,y. For real sequences in ℓ2(Z) it is defined

as 〈x,y〉 =
∑

k∈Z

x[k]y[k]
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A PROOFS

Proof of the theorem 9

Proof: Let us consider that the portion of the signal preceding segment n of length
ns is divided into (n− 1) segments of general sizes is

nS =
n−1∑

i=0

is. (A.1)

Then, according to (4.7) and the fact that nl = nL+ ns, we can write

n+1L = nL+ ns− 2J

(⌈
nL+ ns− r(J)

2J

⌉
+ k

)
. (A.2)

For n = 0⇒ 0L = r(J) the following holds, since

1L = r(J) + 0s− 2J

(⌈
0s

2J

⌉
+ k

)
, (A.3)

so for n = 0 the theorem holds

0R = r(J)− 1L = 2J

(⌈
0s

2J

⌉
+ k

)
− 0s. (A.4)

Then we can continue using induction

n+2L =

= n+1L+ n+1S − 2J

(⌈
n+1L+ n+1s− r(J)

2J

⌉
+ l

)

= r(J)− nR + n+1s− 2J

(⌈
nR + n+1s

2J

⌉
+ l

)

= r(J)− 2J

(⌈nS

2J

⌉
+ k

)
+ nS + n+1s− 2J






n+1s− 2J
(⌈

nS
2J

⌉
+ k

)
+ nS

2J




+ l




= r(J)− 2J

(⌈nS

2J

⌉
+ k

)
+

n∑

i=0

is− 2J







n∑
i=0

is− 2J
(⌈

nS
2J

⌉
+ k

)

2J




+ l




= r(J)− 2J

(⌈nS

2J

⌉
+ k

)
+ n+1S − 2J

(⌈
n+1S

2J
−
⌈nS

2J

⌉
− k

⌉
+ l

)

= r(J) + n+1S − 2J

(⌈
n+1S

2J

⌉
+ l

)

n+1R = r(J)− n+2L = 2J

(⌈
n+1S

2J

⌉
+ l

)
− n+1S

�
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B EXAMPLES

(a) (b)

(c) (d)

Figure B.1: SegDWT applied to an image. Wavelet filter bank setting: J = 3 and

m = 8. (a) Initial division into segments (blocks). (b) Wavelet coefficients colored

according to the segments they belong to. (c) Properly extended segments. (d)

Reconstructed segments.
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Figure B.2: No border artifact SegDWT example. The setup from fig. 2.2 (J = 4,

m = 8) which results in
nSLnoright = 90 for each segment. (a) Initial segments. (b)

Extended segments. (c) Segments after reconstruction. (d) Segments with added

overlaps (black line).
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Figure B.3: Wavelet coefficients belonging to the extended segments. From the top row to the bottom detail coefficients at levels

j = 1, 2, 3 and appox. coefficients. Gray coefficients are discarded.

96



01020
−20

0
20
40
60

0 510
−40

−20

0

0 5
−50

0
50

100

0 1 2
−10

0

10

0 1 2

−10

−5

0

p→

0
d

(1
)

th
r

0
d

(2
)

th
r

0
d

(3
)

th
r

0
d

(4
)

th
r

0
a

(4
)

th
r

(a)

0 20 40 60 80
−20

0
20
40
60

0 10 20 30 40
−40

−20

0

0 5 10 15 20
−50

0
50

100

4 6 8
−60
−40
−20

0
20

4 6 8
0

200
400

p→

1
d

(1
)

th
r

1
d

(2
)

th
r

1
d

(3
)

th
r

1
d

(4
)

th
r

1
a

(4
)

th
r

(b)

50 100 150 200

−10
0

10

40 60 80 100

−10
0

10
20

20 30 40 50
−15
−10
−5

0
5

10 15 20 25

−20
0

20

10 15 20 25

300

350

400

p→

2
d

(1
)

th
r

2
d

(2
)

th
r

2
d

(3
)

th
r

2
d

(4
)

th
r

2
a

(4
)

th
r

(c)

180 200 220 240
−20
−10

0
10

90 100 110 120 130

−20

0

20

50 55 60 65

−60
−40
−20

0
20

26 28 30 32 34 36
−100
−50

0
50

26 28 30 32 34 36

200
400
600
800

p→

3
d

(1
)

th
r

3
d

(2
)

th
r

3
d

(3
)

th
r

3
d

(4
)

th
r

3
a

(4
)

th
r

(d)

Figure B.4: Wavelet coefficients after hard thresholding. Coefficients are organized as in fig. B.2. Original coefficients are gray,

colored after hard thresholding.
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Figure B.5: Segment reconstruction after coefficient thresholding.
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Figure B.6: SegDWT algorithm and its modifications examples. Depth of decomposition J = 3 and filter length m = 4, which leads to r(J) = 21. The

dividing index between segments is n+1S = 66. (a) Original SegDWT analysis algorithm with
n+1SRmin = 6,

n+1SLmax = 15. Dark coefficients on the left

from the index 72 are discarded in the next step of the algorithm. (b) Original SegDWT analysis algorithm with the extension tradeof: n+1Rmin = 14,
n+1Lmax = 6 (2J = 23 = 8 samples are traded). (c) Original SegDWT algorithm synthesis. Zero coefficients are appended to the beginning of coefficients

vectors: r(3 − 1) = 9 in level j = 1 and r(3 − 2) = 3 in level j = 2. The non-zero coefficients are shifted accordingly. (d) Original SegDWT algorithm

synthesis with the extension tradeof.
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Figure B.7: SegDWT algorithm modifications examples. Depth of decomposition J = 3 and filter length m = 4, which leads to rred(J) = 14. The dividing

index between segments is n+1S = 66. (a) SegDWT analysis modification employing odd subsampling with
n+1SRmin = 6,

n+1SLmax = 8. (b) SegDWT

analysis modification employing odd subsampling and no right extension:
n+1SLnoright = 14 + (66 mod 23) = 16. (c) SegDWT synthesis modification for

odd subsampling. Zero coefficients are appended to the beginning of coefficients vectors: rred(3 − 1) = 6 at level j = 1 and rred(3 − 2) = 2 in level j = 2.

The non-zero reconstructed segments overlap is equal to rred(J) = 14. (d) SegDWT synthesis modification for odd subsampling and no right extension.

Zero coefficients are appended to the beginning of coefficients vectors: rred(3− 1) +
⌊

(66 mod 23)
21

⌋
= 7 at level j = 1 and rred(3 − 2) +

⌊
(66 mod 23)

22

⌋
= 2 in

level j = 2. The reconstructed segment overlap is equal to
n+1SLnoright = 16.
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Figure B.8: OLA and ROI SegDWT algorithm modifications. Depth of decomposition is J = 3 and filter length is m = 4. (a) SegDWT analysis algorithm

OLA modification. Numbers of coefficients forming overlaps in the wavelet coefficients vectors are: for j = 1, 66R
(1)
OLA =

⌊
r(1)+(66 mod 23)

21

⌋
−
⌊

(66 mod 23)
21

⌋
= 1,

for j = 2, 66R
(2)
OLA = 2 and for j = 3, 66R

(3)
OLA = 2. (b) ROI SegDWT analysis algorithm modification. The segment is initially extended by

n+1SLnoright =

14+(66 mod 23) = 16 samples from the left and by 85ROLS =
⌊

21+(85 mod 23)
23

⌋
23− (85 mod 23) = 19 samples from the right. Gray coefficients are discarded

prior to further processing. (c) SegDWT synthesis algorithm OLS modification. Initially, there are 66R
(j)
OLA coefficients borrowed from the following segment.

The number of zero samples, appended to the beginning of wavelet coefficients at level j is rred(J − j). (d) ROI inverse SegDWT.
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Figure B.9: SegDWT analysis with overlaps in the wavelet domain. J = 3,

m = 4. Overlap-save SegDWT analysis: vectors n+1a(0) (which are identical to
n+1x), n+1a(1), n+1a(2) are extended from the left by m − 1 or m − 2 coefficients

taken from the previous approximation coefficient vectors.
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C DVD CONTENT

The folders on the accompanied DVD are organized as follows:

• algorithms – folder contains Matlab code implementing proposed algorithms.

See readme files.

– ch4_SegDWT – Matlab implementation of the original SegDWT and the

proposed SegDWT algorithm modifications

– ch5_SegLWT – Matlab implementation of the novel SegDWT algorithm

– ch6_multidimensional_SegDWT – Matlab demonstration of the 1D-3D

SegDWT algorithm

• software – VST plugin and SegDWT library.

– ch7.1_VST_plugin – contain source codes and binaries of the VST plugin

– ch7.2_Parallel_2D – contain source codes and binaries of the parallel

implementation of 2D SegDWT.

• text – contains the electronic version of this thesis in pdf and ps formats as

well as all LATEX source codes.

The codes can be also found on the SegDWT algorithm webpage [49].
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