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Reducing Communication in Distributed Bayesian
Target Tracking: Likelihood Consensus 2.0

Erik §au§a, Pavel Rajmic, and Franz Hlawatsch

Abstract—The likelihood consensus (LC) enables a distributed
computation of the global likelihood function in a decentralized
sensor network with possibly nonlinear and non-Gaussian sensor
characteristics. A major application of the LC is Bayes-optimal
target tracking using a distributed particle filter. Here, we pro-
pose an evolved LC methodology—dubbed “LC 2.0”—with sig-
nificantly reduced intersensor communication. LC 2.0 uses multi-
ple refinements of the original LC including a sparsity-promoting
calculation of expansion coefficients, the use of a B-spline dictio-
nary, a distributed adaptive calculation of the relevant state-space
region, and efficient binary representations. We consider the use
of the proposed LC 2.0 within a distributed particle filter and
within a distributed particle-based probabilistic data association
filter. Our simulation results demonstrate that large savings in in-
tersensor communication can be obtained without compromising
the tracking performance.

Index Terms—Target tracking, particle filter, likelihood consen-
sus, splines, orthogonal matching pursuit, OMP, sparsity, PDA
filter.

I. INTRODUCTION
A. Background and Motivation

Target tracking aims at estimating the time-varying state—
e.g., position and velocity—of a moving object (“target”) [1],
[2]. Here, we consider distributed Bayesian target tracking in
a decentralized sensor network [3], based on a generally non-
linear and non-Gaussian state-space model. For distributed
Bayesian target tracking, we use a distributed particle filter
(DPF) combined with the likelihood consensus (LLC) scheme
for networkwide information dissemination [4], [5]. In addi-
tion, we consider a distributed particle-based probabilistic data
association filter (PDAF), which is suited for scenarios with
missed detections and clutter [2], [6]-[8].

DPF methods have been proposed and studied, e.g., in [4],
[5], [9]1-[17]. Besides DPF methods using the LC or other
consensus-based information dissemination strategies [4], [5],
[10], [16], a second class of DPF methods is based on the dif-
fusion strategy [11]-[13], [18]. Diffusion-based DPF methods
perform only one diffusion iteration per filtering time step,
whereas LC-based methods perform several consensus itera-
tions per filtering time step. However, since diffusion-based
methods also exchange measurements between neighboring
sensors, the communication cost can still be high. Further-
more, the diffusion approach does not aim at approximat-
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ing the Bayes-optimal filter. In fact, approaching the Bayes-
optimal filter would again necessitate multiple diffusion itera-
tions per filtering time step [18].

LC-based DPF methods approximate the globally Bayes-
optimal state estimator, where “globally” means that the mea-
surements of all the sensors in the entire sensor network
are taken into account. Because the globally Bayes-optimal
state estimator involves the global likelihood function, the LC
scheme computes an approximation thereof in a distributed
way. This is achieved by first performing a dictionary expan-
sion of the local log-likelihood function of each sensor and
then disseminating and fusing the expansion coefficients by
means of a consensus or gossip algorithm [5]. The communi-
cation cost of the LC increases with the accuracy of approxi-
mating the global likelihood function.

B. Contributions and Paper Organization

In this work, we propose an evolved LC methodology—
dubbed “LC 2.0”—with significantly reduced communication
cost. More specifically, we introduce the following modifica-
tions and extensions of the basic LC scheme:

o A “sparsity-promoting” computation of the LC expan-
sion coefficients by means of the orthogonal matching
pursuit (OMP) [19], [20]. Compared to the least-squares
fit used so far, the OMP offers an improved tradeoff be-
tween approximation accuracy and communication cost
by enabling an easy specification and a reduction of the
number of significant expansion coefficients. We note that
the OMP-based computation was previously described in
our conference publication [8].

¢ Use of a B-spline dictionary [21], [22] instead of the
Fourier or monomial dictionary used previously [4], [5],
[8], [23]. The atoms of B-spline dictionaries are localized
in the state space, which is advantageous in view of the
locality of the posterior distribution. This entails a further
modification of the LC, in which the dictionary expansion
is based on the values of the local log-likelihood functions
taken on a uniform grid rather than at the positions of the
particles.

e An “adaptive zooming” mode of the LC in which the dic-
tionary expansion of each local log-likelihood function is
restricted to a “region of interest.” This region of interest
is determined online in a distributed manner.

« Efficient binary representations of the expansion coeffi-
cients communicated between the sensors.

The “LC 2.0” method proposed in this article employs an ap-
propriate combination of OMP-based coefficient calculation,
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B-spline dictionary, uniform-grid evaluation of the local log-
likelihood functions, adaptive zooming, and efficient binary
representation of the expansion coefficients.

Besides the DPF, which is the simplest use case for the
proposed LC 2.0, we also consider a distributed version of the
particle-based PDAF described in [2], [7]. The PDAF yields
an improved tracking performance in the presence of clutter
and missed detections.

This article is organized as follows. Section II describes our
system model and reviews LC-based distributed particle filter-
ing. Section III presents an OMP-based calculation of the ex-
pansion coefficients and a uniform-grid evaluation of the local
log-likelihood functions. In Section IV, the B-spline dictionary
is introduced. A distributed method for adaptively determin-
ing a region of interest is described in Section V. Section VI
presents efficient binary coefficient representations. In Section
VII, we discuss the use of LC 2.0 within a distributed PDAF.
Finally, the advantages of LC 2.0 are demonstrated via simu-
lation results in Section VIIL.

II. REVIEW OF LC-BASED DISTRIBUTED PARTICLE
FILTERING

First, we review the conventional formulation of LC-based
distributed particle filtering [4], [5]. The underlying system
model will be extended in Section VII.

A. System Model

We consider a target with an unknown time-varying state
Xn = (Tp1- o Tom)t € RM, where n € Ny is a dis-
crete time index. In many applications, the target state in-
cludes the target’s position and velocity. The target state
evolves according to a known state-transition probability den-
sity function (pdf) f(x,|x,_1). There are S sensors indexed
by s € {1,...,S5}. Sensor s is able to communicate with a
certain set Ay C {1,...,S5}\ {s} of “neighboring” sensors.
The graph constituted by the sensors and the communication
links is assumed to be connected, i.e., there is a connection—
possibly comprising multiple links—between any two sensors.
At each time n, each sensor acquires a measurement such as,
e.g., noisy observations of the target’s range and bearing. The
measurement zgf) € R¥s at sensor s and time n is statistically
related to the target state x,, according to the known local
likelihood function (LLF) f(z%[x,).

The global likelihood function (GLF) f(z,|x,) involves
n = (zn T (S)T)T, i.e., the measurements of all sensors
at time n. We assume that the sensor measurements z( *) are
conditionally independent across s and n given the state se-
quence. It follows that the GLF factorizes into the LLFs, i.e.,

H f(z
(s)

Each sensor s knows its own measurement z,,’ and its own
LLF f (zgf) ’xn) (as a function of x,,), but it does not known
the measurements or LLFs of the other sensors. We emphasize
that the above system model does not make any assumptions
of linearity or Gaussianity.

f(zn|xn) =

& xn) .- (1)
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At each time n, each sensor s estimates the current target
state x,, from the measurements of all sensors up to time
n, z1., = (z] --- z})T. This is achieved by an approximate
distributed implementation of the minimum mean-square error
(MMSE) estimator [24]

)A(%MSE é E{Xn|zlzn} - /Mxnf(xn|zl:n) dxn; (2)
R

in which f(x,|z1.,) is the global posterior pdf.

B. Local Particle Filter

Each sensor s runs a local particle filter, which operates
independently of the other sensors except that it uses an ap-
proximation of the GLF f(z,|x,,) that is calculated in a dis-
tributed way via the LC scheme (see Section II-C). At each
time n, the local particle filter at sensor s represents the global
posterior pdf f(x,|z1.,) by a set of J particles and associated
weights, {(ng 7) ,(f J))}J_l, with ijlw,(f’”: 1.

Using the smplest particle filter algorithm [25], this particle
representation is calculated time-recursively as follows. In the

prediction step, for each previous particle x*9) a “predicted”

n 1’
particle x( nln s:) ), i.e., from the

state-transition pdf f(x,|x,_1) evaluated at X, _; = x(s’”
In the update step, the associated weights are calculated as

(8,9) (s,9) )

n\ﬁ—l = C'fs(zn|xn\ﬁ—l ’

”, is sampled from f xn‘x

J=1...J, 3)

w
with normalization factor ¢ =1/ ijl fs (zn’xff‘rz)_l) Here,
fs(2n|%,) denotes an approximation to the GLF f(z,|x,) in
(1) that involves the current measurements of all the sensors,
Z,,. This GLF approximation is calculated in a distributed way
via the LC scheme reviewed in Section II-C, which requires
communication with all the neighboring sensors s’ € A,. Next,
the weighted particle set {(XS\;)—17“’S\7§)—1)};:1 is resam-
pled to avoid particle degeneracy [25], [26]; this results in
the new particles x; 7) ,j=1,...,J with associated weights

w{® = 1/.J. The overall recursive algorithm is initialized
at time n = 0 by particles xé ), j=1,...,J that are ran-
domly drawn from some prior pdf f(xg), and by the weights

(S’] ) =1/.J. Finally, the local particle filter at sensor s cal-
culates an approximation ) to the MMSE estimate %MMSE
in (2) as the weighted sam le mean of the g)redlcted particles
(before resampling), i.e, Xy = 37 w9 x(s9)

g 1 %nln—1"n|n—1"

C. The LC Scheme

Next, we review the LC scheme [4], [5], which is used
for the distributed calculation of the GLF approximations
fs(zn|xy,) involved in the update step (3). Let us consider

Ln(xn) 2 = 1ogfzn|xn = Zlogf (20]x,), @

S
where log denotes the natural logarithm and (1) was used.
Note that, conversely, f(z,|x,) = exp(SL,(xy)). Using a
dictionary of functions or “atoms” {1/1k(x)}kK:1 that is identi-
cal for all sensors, each sensor s approximates its log-LLF by
a linear combination of the atoms, i.e.,
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K
log f (28 [xn) & > oMy (x) (5)
k=1

Here, the local expansion coefficients {a(s k)}kzl are calcu-
lated locally at each sensor s using the local measurements
zgf), as described in Section III. The choice of the dictionary
{x (x)}kK:1 will be considered in Section IV.

By combining (5) with (4), we easily obtain the following
approximation of Ly (x,) = % 10g f(zn|xy):

K
(Xn) ~ Z /By(zk) wk (Xn) ) (6)

with the global expansion coefficients 3, (k) & 5 le al®k)

k=1,..., K. As the global expansion coefficients ﬁr(lk) are the
averages ot the associated local expansion coefficients oz(s *) of
the individual sensors, they can be computed in a distributed
manner by means of K instances of the average consensus
algorithm [27], which merely requires each sensor s to com-
municate with its neighboring sensors s’ € N. In iteration ¢ €
{1,2,...} of the kth instance of the average consensus algo-
rithm, sensor s updates an iterated estimate of ﬁ,(f) as

BEINil = > yew BE]i-1]. @)
s'e{s}UN;

Here, the v, . are suitably chosen weights [27]-[29]; a sim-
ple standard choice is glven by the Metropolis weights [28],
[29]. Furthermore, the 34" )[ —1] for all s’ € N were com-
municated to sensor s by its neighboring sensors s’ € A.
Sensor s then broadcasts the updated iterated coefficient esti-
mates ﬁn )[ ], k=1,..., K to its neighboring sensors.

The recursion (7) is initialized by the local expansion coef-
ficient, i.e., BY9[0] = o), and terminated after a sufficient
number I of iterations. The final estimates ,8 (k. S)[ I] are then
used in (6) to obtain an approximation to L, (x,,) and, in turn,
to the GLF f(z,|xy) = exp(SLy(x,)). Thus, the approxima-
tion to f(z,|x,) obtained at sensor s is

(Zn|xn) = €xp (S Z B(k * djk (Xn)> .
For I — oo, the consensus recursion would converge to 67(11@)
because, as assumed in Section II-A, the communication graph
is connected [28]. As an alternative to the average consensus
algorithm, a gossip algorithm [30] can be used.

In each iteration ¢ of the average consensus algorithm, sen-
sor s has to broadcast the real numbers 3" [i], k=1,..., K
to its neighboring sensors s’ € NV. In the next four sections,
we will present modifications of the original LC scheme that
lead to a significant reduction of the communication cost.

III. SPARSITY-PROMOTING LLF APPROXIMATION
USING THE OMP

In this section, we propose a sparsity-promoting method for
. . . (s,k) K
calculating the local expansion coefficients {ozn } p—; that
are involved in the log-LLF approximation (5) for a given
number K of atoms 1 (x).

A. Review of Least-Squares-based LLF Approximation

The method originally proposed in [4], [5] performs a least
squares (LS) fit of the right hand side of (5) to the left hand
side in a way such that the total approximation error at the pre-
dicted particles {x 75) 1} =1
the local coefficient vector asf), the discretized-atom vector
1/:7(15’36, and the discretized-log-LLF vector 0% as

a(S’K))Te RX,

is minimized. Let us introduce

al® £ (o).

n. =

s s, s,J) T
":br(z?c £ (d’k(xfw;)—l) “Up(x fz\n 1)) eR’,

S S S T
() 2 (log f(2 xS ) - log f(2 x0T ) e R

Then, the error minimized by the LS fit is given by
2

= nf? - @l

K

Yl

k=1

egf) =

where the dlscretlzed dictionary matrix ¥ € R7*X has the

vectors 1,0 % k=1,..., K as columns. Note that wr(fzg and

lIl(S) depend on the predlcted particles x$9 Rl 7 1- The coefficient

(s) (s) +

vector oy, ’ minimizing €, is given by [31]
ks = W)

where (9t 2 (\Ilsf) \I’Sf))_ @7 is the Moore—Penrose
pseudoinverse of lIlgf). Here, it is assumed that the vectors

1,07(1536 are linearly independent and J > K, i.e., the number of
particles is larger than or equal to the number of atoms.

B. OMP-based LLF Approximation

As an improvement over this LS-based calculation, we pro-
pose a sparsity-promoting calculation using the OMP [19],
[20]. Our goal is to reduce the number of “significant” ex-
pansion coefficients and, thereby, the number of consensus
instances and, in turn, the communication cost of the LC.

The OMP is a greedy iterative algorithm that selects one
atom per iteration. In the first iteration, the OMP at sensor s
selects the atom index k for which the /5-normalized atom
vector ¢7(f;€ best matches the log-LLF vector 0%, i.c.,

(s)
. M,

(Note that k1 also depends on n and s, which is however not
indicated for notational simplicity.) Then, the residual pgf)l

is formed by subtracting from 771(1) the orthogonal projection

of 7% onto 1/)nk , e, pff)l =0 —aep Sk with a; =
1/17(153317)" 1) ', || In the further iterations [ = 2,3, ..., the
atom index £ for which the normalized version of wni best

matches the previous residual p;; 1 1s selected, i.e.,

()T _(s)
| = argm —.

kel o) [ ||

Then, a new residual p( % is formed by subtracting from 7,

the orthogonal projection of 77,(1) onto the subspace of RY

(s)
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spanned by "/’n e 1/)" T i
pif,’ n$f> - P,Ei’ ), ®)
with the orthogonal projection matrix

Pr(z l) L (I)(Sl) ((I)(S)T(I)(S))_l

n n,l n,l

e =020 )

(s)

where '1’7(1) R7*! is the matrix with columns P, Fegree

1/}7(15}61 We note that (8), (9) can be rewritten as

(s) (s)

pnl =M (S) £ q)(S)—i— (S)

<I>(S) c(s), with ¢,/

Here, c( 3 € R! is the LS solution to the problem of approx1-
mating 17,(1) by <I>(S)c ie., c( ) = argmin, ||n 'IDMCH .
This iterative algorithm is stopped after a specified number
of iterations or when || pff || falls below a specified positive
threshold. Let L, denote the final iteration index at sensor s.
Then the result of the OMP algorithm is the coefficient vector
al) = (a(s’l) el ) whose elements a( ) are
n,0oMP — \%n,0MP n,0MP ,OMP

equal to the associated elements of cEL)L = <I>(S)Jr S € REs

if ke {ky,...,kr_ } and zero otherwise, i.c.,
(s,k) _ (Cfi)LS)l, k=Fk € {kl,...,kLs},
mOMP o, kg (k... k).

Accordingly, only L, of the K elements of afi)c)MP are

nonzero, which means that the number of nonzero local ex-
pansion coefficients equals the number of OMP iterations per-
formed. Thus, depending on the stopping criterion, aif)OMP is
a more or less sparse vector. The computational complexity
of the OMP is higher than that of the LS-based calculation
because the OMP comprises Ly LS problems involving in-
version of the matrices @flszT*I)fLSl) e R forl =1,...,Ls.

Note, however, that the matrices <I>7(fl) are typically small.

C. Uniform Sampling of the Log-LLF

In both the OMP-based and LS-bas}ed Igalculation of
the Tlocal expansion coefficients {agf’ )}kzl, the log-
LLF log f approximating function
K el ol k)wk (xn) are sampled at the predicted parti-
cles x,, = Xn|n 1 J =1, ,J. However, when using a
B-spline dictionary as proposed in Section IV-B, we observed
experimentally that the expansion coefficients are often unre-
alistically large, which leads to an incorrect selection of the
set of significant atoms that are used for approximating the
LLF. This is probably due to the fact that, as B-spline atoms
are highly localized in the state space, the expansion coeffi-
cient for a B-spline atom that is located away from the main
particle population can be heavily affected by a few local
“outlier particles” that are not representative of the posterior
pdf. This effect does not occur in the case of a Fourier dictio-
nary, because the Fourier atoms are not localized and thus the
respective coefficients are always affected by all the particles.

(s) n'|%x,) and the

To avoid this issue, we propose to use a uniform sampling
of log f(zgf) |xn) and Zszl a%&k)d)k (x,,), where the samples
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x\ = (555:1)1 . flq)M)T, g=1,...,Q, lie on a regular grid
within a region of interest (ROI)
R = [, b0] x ..o x [a}D 6] cRM. (10)

More speciﬁcally, in the mth coordinate direction, there
are Qn sample points uniformly spaced in the interval
[ (m) b(m)] The total number of M -dimensional (M -D) sam-
ples xsl) then is Q,, = Hm 1 Qn m) A distributed, particle-
based method for calculating the ROI interval bounds a( m)
and b( ™) will be presented in Section V.

Using this uniform sampling approach, the atom vector ), j,
and the log-LLF vector n(s) are redefined as

Pk 2 (r(xlD) g (x(9 )))
0 £ (log f(2|x(1) -+ log £ () [x(@)))" € R,

We also obtain new dictionary matrices ¥, € R?"*X (for
LS) and 'I>(S) € R@*! (for OMP), as the 1, 1 constitute the

columns of these matrices. Note that <I>7(le) still depends on s

since the OMP-based selection of the ’llfnk constituting the

l) depends on the LLF at sensor s.

RQH,

>

columns of <I>7(f

IV. B-SPLINE DICTIONARY

The dictionary {djk(x)}kK:l used in the log-LLF approxi-
mation (5) affects both the accuracy of the approximation and
the communication cost of the LC. In this section, we intro-
duce the B-spline dictionary as an attractive alternative to the
Fourier dictionary used in the conventional LC [5], [8], [23].
We temporarily drop the time index n for notational simplicity.

A. Review of the Fourier Dictionary

To prepare the ground, we briefly review the Fourier dictio-
nary, which will also be used as a benchmark in our simula-
tions in Section VIII. We first consider 1-D Fourier dictionar-
ies. The atoms of the 1-D Fourier dictionary for the mth co-
ordinate direction, {wém)( ) zfl"H, with m € {1,..., M},
are defined as

1/1]%7”)(1‘) = cos (%(l}:—l)(ﬂr—a(m)))
for k = 1,...,Km+1 and
™ (z) = sin <%(/}_1_Rm)(m_a<m>))
for k = f(’m—l—Z, .. ,QK'm—l—l, all for x € [a(m),b(m)]. Here,
dm & p(m) _q(m) is the ROI interval length in the mth coor-

dinate direction. Note that the number of frequencies involved
(including frequency 0) is K,,+1. The overall M-D Fourier
dictionary on the ROI R is then constructed as

M
= 1 ¢ @), (1n
m=1
with M-D index k = (ky---ka)T € {1,...,2K; +1} x
ox {1 2K 1. F1nally, mapping k to a 1-D index
ke{l,... ,K}, with K = Hm:1(2K +1), yields the M-D
Fourier dictionary with 1-D indexing {y (x)}szl.
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PANG ANLE)

(2)
/

> b /
B // ‘ \}/ /

alm) x p(m)

Fig. 1: 1-D B-spline dictionary as defined by (13), with a(m) =0,
b™ =8, K;p="7, and Ad™ = (b(™ —a™) /(K,,+1) =

B. The B-Spline Dictionary

As an alternative to the Fourier dictionary, we propose the
use of a dictionary of M-D B-splines with uniform spacing
of their knots [21]. The advantage of B-spline dictionaries is
the localization of their atoms, which is desirable in view of
the localization of the posterior distribution.

A 1-D B-spline of degree r € Ny is a piecewise polyno-
mial function composed of polynomial segments of degree r.
For example, the 1-D cubic (i.e., r = 3) B-spline prototype
with knots positioned at the integers is an even function with
support (—2,2) that is given by [22]

2|z + 4z®, 0<|z|<1
P(x) = q 52— 2)), 1< |z| <2 (12)
0, |z £[0,2).

B-splines enjoy numerous desirable properties [22]. In particu-
lar, their atoms have compact support, and thus are localized.
This is an important difference from the Fourier dictionary,
whose atoms are supported on the entire ROI. Furthermore,
B-splines are continuous and have continuous derivatives up
to degree r—1. They are well suited for interpolation; asymp-
totically (for » — o0), they achieve the interpolation proper-
ties of the sinc function. Finally, the infinite sum of all shifts
Y(x—1), i€Z of a 1-D B-spline prototype 1 (x) is a constant.
Analogous properties hold in the M-D case.

We first consider 1-D B-spline dictionaries. The atoms of
the 1-D B-spline dictionary for the mth coordinate direction,

{1[1]%7”) (x)}?:l are defined by scaling and shifting the B-
spline prototype 1 (z) in (12) according to
—am _ EAgm™)
)y [xT—a

for k=1,...,K,, where z € [a(m),b(m)]. Here, Ad(™) £
(b — (™) /(K,, +1) is the grid spacing and K,, is the
number of shifts in the mth coordinate direction. The 1-D B-
spline atoms 1/}£m)(x) are centered around grid points z; =
a™ + EAd™), k=1,...,K,, that are placed uniformly in
the interval [a(™),b(™)] with spacing Ad("™. An example is
shown in Fig. 1.

The M-D B-spline dictionary on the ROI R is then com-
posed of M-D atoms i (x) that are constructed as in (11),
with M-D index k 2 (k:l /;ZM)T e {1,. f(l} X ...
{1,..., Ky} Flnally, the M-D dictionary wrth 1-D mdex—
ing, {d)k( )}k 1» is obtained by mapping k to a 1-D index
ke{l,...,K}, with K = H _, K. By this construction,

the M-D atoms are shifts of an M-D B-spline prototype that
are located on an M-D grid. This grid is regular in each co-
ordinate direction.

V. DISTRIBUTED CALCULATION OF THE ROI

According to Section IV, the choice of the ROI R,, in (10)
influences the number of the B-spline or Fourier atoms )y, (x),
and thus also the number of expansion coefficients aSS”“) that
are communicated between neighboring sensors Furthermore
if the LC employs uniform sampling of log f zn ‘xn as de-
scribed in Section III-C, then the choice of R,, also influences
the number @Q),, of M-D samples xq(ll), N ¢ @) 1t follows
that the choice of R, has an influence on the accuracy of
the log-LLF approximation as well as on the communication
cost of the LC. In this section, we present a distributed algo-
rithm that adaptively determines the ROI R,,. The goal is to
“zoom in” on the effective support of the current global pos-
terior pdf f(x,|z1.,) in order to avoid sampling the log-LLF
and placing atoms outside that effective support, i.e., using
computation and communication resources to approximate the
log-LLF on irrelevant parts of the surveillance area.

A. Calculation of the ROI Interval Bounds

Our task is to determine the interval bounds ™ and 5™
of the ROI R,, = [a4”,b57] x ... x [a™), 6], It will be
convenient to parametrize R, in terms of the center point &,, =
(57(11)- o fr(lM))T with 5,(:”) £ (a,(fn)—l—b%m))ﬁ and the extension
around the center point as characterized by the “extent vector”
dp = (dP - dMYT with ™ = b0™ — a(™. The interval
bounds can be recovered from &, and d,, as a(m) —¢lm _
d™ /2 and b = €™ + ™ /2.

The proposed algorithm for calculating the ROI determines
&, and d,, at each time n in a distributed manner. This has to
be done before the LC is performed, i.e., before the update step
of the local particle filter. Indeed, the update step presupposes
knowledge of the ROI, because all sensors use the same ROI-
dependent dictionary. Therefore, when the ROI is calculated,
the current particle weights w,(l ) are not yet available.

First, each sensor s calculates the sample variances of the

predicted particles {x 5-J) }.:1 in the individual coordinate

nln—1
directions,
L (o) () \2
Sy EN] ~(s) o
nm_ Z n\n 1m_ n,m) ’ ffl—l,...7j\/[,
J:1

where :i’ff)m £1 ZJJ L :cfjg) 1.m> here, z! "]) denotes the
mth element of xil‘ 7 . Then, for each m, lﬁlin and 07(522
are averaged across all sensors, i.e., the goal is to compute

A 18 (s 52 A LNS (s )
T m =52 a1 Tnm and o2 = <> oy, These av-

eraging operations are implemented in a dlstrrbuted manner by
performing 2M parallel instances of the average consensus al-
gorithm to compute approximations ;%Sfin of :%n,m and a(,i) of
0721 m»form=1,..., M. As only a finite number of consen-
sus iterations can be performed, the approximations %552% and
a,%(m) obtained at different sensors s will be (slightly) differ-
ent. Because the LC requires the same ROI R,, at each sensor,
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Fig. 2: Example (simulation result) of the ROI R,, for dimension

M =2 at two successive time points n. The ROI boundary is shown

as a §reen rectangle. The colored dots depict the predicted particles
(5 J for three sensors s=1, 2, 3; the color indicates the sensor.

the next step in the algorithm is to perform 2M parallel in-
stances of the max1mum consensus algorithm [32] to compute
T £ max {xnm} and 02“““ £ max {0, 2(5)};971 for
m=1,...,M. The max1mum consensus algorithm converges
in a finite number of iterations, which equals the diameter of
the sensor network, i.e., the minimum number of hops con-
necting the two most distant nodes of the network [32]. Hence,
after performing these iterations, identical maxima x,‘{‘%’,‘l and
2™ are available at all sensors.

We then define the ROI center point &, to be the vector
with elements

gm=zmx m=1,...,M.

n,m?

on

Next, we choose each extent vector element d%m) as a function

of the standard deviation s,, ,,, = U_ﬁ_"f,;‘x. The goal is to

choose the d(m) sufficiently large so that R,, tends to include
all the particles, but not larger because this would result in
an unnecessarily large dictionary size K. Thus, we set d%’”)

equal to sy, m, Where y>1 is an empirically chosen scaling
m)

factor, subject to a lower bound dmm , le.,
21,1 3 f n,m — > d ?
dom — 7(;)’ SR “““) (14)
dois i yspm< dmm .

Here, the lower bound d ™) adds robustness in cases where

the set of predicted partlcles {x ";) 1} i1 is very concentrated
in the state space. Finally, if necessary, this ROI is replaced
by its intersection with the overall state space region that is
available for x,,. Fig. 2 shows an example of the ROI R,, at

two successive time points n along with the predicted particles.

B. Calculation of the Numbers of Atoms

Once the extent parameters d%m) are known, we are also
able to calculate the numbers of 1-D B-spline or Fourier atoms
7,/)1%7")(@. We recall from Section IV-B that the number and
spacing of the 1-D B-spline atoms in the mth coordinate di-
rection are given by f(mm and Ad\™ = dq(lm)/(f?nm—i—l), re-
spectively. Therefore, for a specified B-spline spacing Ad%m

we obtain (m)
’ Ad(™
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Fig. 3: Illustration of the covering of the ROI R,, (green rectangle)
with B-spline atoms of two different densities, for dimension M =2.
Also shown are the predicted particles x( i ) for all the sensors
(blue dots). The small grid rectangles w1thm the ROI indicate the

effective supports of the 2-D B-spline atoms.

Alternatively, we may also specify the 1-D B-spline density,
i.e., the number of 1-D B-spline atoms per unit length in the
mth coordinate direction, £y, = (Knm) / d%m). Here, K’mm
follows as

Knm = [fnmd(™]. (15)

For the Fourier dictionary, according to Section IV-A, there
are 2I~(n,m+1 1-D Fourier atoms in the mth coordinate di-
rection. These atoms involve f(mm + 1 different frequencies
(including frequency 0), which are given by v; £ (k-1)/ am,
k=1,...,K,+1. The bandwidth is given by the maximum
frequency, v, ., = f(n,m/d,(lm). If vg . is specified,
K’n,m is obtained as
Knm = LVKn m-‘rld(m)J :

We also recall from Section IV that the overall dictionary
size, i.e., the number of M-D atoms ¥(x), k = 1,...,K,,
is given by K, = Hﬁf:l IN{n,m in the B-spline case and
K, = Hn]\le(Zf{n,m +1) in the Fourier case. Fig. 3 illus-
trates the covering of the ROI R,, with B-spline atoms using
two different densities of the B-spline atoms. A higher den-
sity enables a more accurate approximation of the log-LLF
log f Z () ‘xn within R,, but also implies a larger dictionary
size K,, and, potentially, a higher communication cost.

VI. BINARY COEFFICIENT REPRESENTATION

Accordmg to Section II-C, the iterated LC coefficient esti-
mates ﬂn [ /] that are communicated between the sensors are
initialized at ¢ =0 by the local expans10n coefficients asl "),
Let L, denote the number of a; k) at sensor s. If the OMP
method was used for calculating the ozsf’k), then, according to
Section III-B, L, is given by the number of OMP iterations.
If the LS method was used, then, according to Section III-A,
the number of aSS”“ is nominally equal to the total number of
dictionary atoms at time n, K,,. However, this number can be
reduced by retaining only Ls < K,, dominant expansion coef-
ficients au; s:k) , i.e., those with largest absolute values or those
whose absolute values are above a specified positive thresh-
old. We note that L, may depend on n, which is not shown
by our notation.
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In LC iteration ¢, each sensor s broadcasts its iterated co-
efficient estimates ﬁr(lk s) [i], k =1,..., K, to the neighboring
sensors s’ € N. In practice, this is done in a binary format. If
each B [i] is represented by a bit sequence of length ny,
then the total number of bits broadcast by sensor s in LC
iteration 7 iS Npuve = K, np,. However, this communication
cost can be significantly reduced by broadcasting only the
nonzero i) [i] plus additional bits that indicate their in-
dices k£ and thus enable a correct interpretation of the stream
of length-ny, bit sequences at the receiving sensors. Let L[]
denote the number of nonzero ﬁA,(Lks)[z] Before the first con-
sensus iteration ¢ =1, the coefficient estimates are initialized
as BY7910] = o), and thus L,[0] = L. In the course of the
consensus iterations ¢ = 1,2,...,I, L¢[i] will generally in-
crease beyond L;. This is because at different sensors s, the
sets {k;} of indices k for which the BLE S)[z] are nonzero are
typically not exactly equal, and thus the consensus update op-
eration in (7) will cause some of the zero B,Sk"s) [i] to become
nonzero. As a consequence, the number of nonzero iterated
coefficient estimates B,(Lk"s) [i] broadcast by each sensor will
be somewhat larger than L, (but still much smaller than the
total number of coefficients, K,,).

In the following, we discuss three dlfferent methods for en-
coding the indices k of the nonzero 511 [ ] in a binary format.
Our first method, termed the indicator method, uses an indi-
cator bit vector of length K,, whose kth bit is 1 if BA,(J”)[L] is
nonzero and 0 otherwise. This indicator bit vector is broad-
cast to the neighboring sensors in addition to the L[i] n,-bit
sequences representing the nonzero [3( ’ )[ ]. Accordingly, the
total number of bits broadcast by sensor s in LC iteration 7 is

N(S)

indicator,?

= Ly[i]me + K. (16)

This is smaller than Ny, = K,np if and only if Lg[i] <
K, (1—1/np).

An alternative method, termed the label method, trans-
mlts along with each ny-bit sequence representing a nonzero
Bn [ /] a binary “label” sequence encoding the index . Since
there are K, possible indices k, each label sequence consists
of [logy(K,,)] bits. Therefore, the total number of bits broad-
cast by sensor s in LC iteration 7 is

= L] (no + [logy(Kn)1) - (17)

This is smaller than Ny, = Kpnp if and only if Lg[i] <
K, /(14 [logy(K,)]/np), and smaller than lejj)lcalor ; if and
only if L[i] < K, /[logy(Ky)].

A third coding method, termed the hyperrectangle method,
presupposes localized atoms and is thus specifically suited to
the B-spline dictionary. As described in Section IV-B, the
B-spline atom 1 (x) corresponding to k=) [i] is localized
around some point x(*) on a regular M-D grid within the ROI
Ry. This grld point can be alternatively indexed by the M-D
index k £ (ky--- kag)" with kp, € {1,..., K} (see (13)).
Due to the localization of the atoms d}k( ), the grid points
x(¥) corresponding to the nonzero B,(Lk"s) [i] can be expected to
lie in a relatively small subregion of R,,. Equivalently, the as-
sociated M-D indices k are located in a relatively small subset
of the total M-D index space. This subset is an M-D “dis-

NGl

ARSI

Jars

\

1)

Fig. 4: Illustration (for dimension M = 2) of the ROI R,, and the
hyperrectangle K [7] (blue rectangle) that contains the 2-D indices
k = (k1 k2)T of the nonzero coefficient estimates A% [i] (filled
pink rectangles).

crete hyperrectangle” IC(S)[] that consists of all k such that
ko € LS00, IS0 i) + AR [i]} for m = 1,..., M.
Here, I, [i] and 150, [i]+ Ak, [i] are, respectively, the min-
imum and maximum mth- coordmate 1ndex ko, of any nonzero

38%*)[i]. The number of dlfferent B4 contained in K4 [i]
is |ICnS)[ ]| = Hmzl(Akn,m[ i] + 1); out of these, L[i] are
nonzero. The basic geometry is visualized in Fig. 4.

Sensor s then broadcasts the L[i] nonzero B&ks)[z] using
L[i] binary sequences of length ny,, and—adopting, e.g., the
strategy of the indicator method—a binary indicator vector
of length |IC )[i]|. This requires Ly[i]ny + |K S)[ ]| bits. In
addition, sensor s informs the neighboring sensors about the
position and extent of K& [i] within R,, by broadcasting bi-
nary representations of the “minimum vertex vector” l~$f) [4]

TS (fo)l[] - f(s) [z])T and the “extent vector” AY)[i] £
(AI; i) - Ak(S)M [])T Because 1\ [i] may be any one of
the K, H K. possible M-D indices k, [log,(K,)] =

)] bits are required to represent it. Further-

o K — 0[]}
Thus, Na 2 [IM (Kpm — ISh[d) dlfferent extent vec-
tors AL [i] are possible, which means that [log,(Na)] =
[fo ogy (Ko m — l(s) [i])] bits are required to represent

[Zm:119g2(K m
more, Ak),[i] must lie in the set {1,.

Agf)[ ). In summary, the total number of bits broadcast by
sensor s in LC iteration i is given by Néygerrw ;= Lg[i]np +
|IC$f) [i]] + [logs (K )] + [logy(Na)] or, in more detail,

(s) _

hyperrect,i —

il + H(Ak(5> +1)

m=1

M B M ~ _
+ {ZlogQ(Knm)—‘ + {ZlogQ(Kn,m—lﬁizn[i]) .
m=1 m=1

Comparing with (16) and (17), we see that Nh(ygmect ; is smaller
than N%)

indicator, % and ]\]iglbz:l,i if and Only if Hm:l(Akns’zn[z] +

7% M % 7(s) 1. .
D)+ [ 1085 (Kan) | + [300_ 102K — B nli])] i
smaller than K, in the former case and L,[i] [log,(K,,)] in
the latter case. This essentially amounts to the condition that
the coordinate extents Alﬁ(fzn[z] are small enough.

VII. LC 2.0 FOR THE DISTRIBUTED PDAF

So far, we presented LC 2.0 for distributed particle filtering.
In this section, extending our conference publication [8], we
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consider the use of LC 2.0 within a distributed implementation
of the probabilistic data association filter (PDAF).

A. Measurement Model, LLF, and GLF

The measurement model underlying the PDAF extends the
measurement model of Section II-A to multiple measure-
ments per sensor, missed detections, clutter, and a related
measurement-origin uncertainty [2], [7]. At each time n > 1,
each sensor s = 1,...,S5 now produces W) measurements
zSS,Z,J, w=1,..., W) where W*) may also be zero. These
measurements include at most one target-generated measure-
ment, the other measurements being clutter (false alarms).
However, the sensor does not know the origins (target or clut-
ter) of the measurements. We make the following assumptions:
(1) At time n, sensor s “detects” the target, in the sense of pro-
ducing a target-generated measurement, with probability Pd(s).
This measurement is distributed according to the conditional
pdf f s) (zn w |xn) (i1) The clutter measurements are 1ndepen—

dent and identically distributed (iid) with pdf f. (s) (zn w) (iii)
The number of clutter measurements at sensor s is Poisson
distributed with mean p(*). Using these assumptions, it was
shown in [2, Sec. 4.5] that the LLF at sensor s is given by

W(S)
Z 1), (x (18)
with the nonnegative constant “floor” component

1502 C (=) (1-PY) (19)
and the W,SS) nonnegative measurement-related components

F9 (20 x0)
/ RO

F(2) ) = 150 +

, w:l,...,WéS).

(20)

()T g7 )T comprises all the measure-

(s) &
Here, z,,) £ (z, - W()

ments at sensor s, and C(zn ) is a normalization constant.
In the absence of missed detections and clutter (i.e., Pd(s) =
W =1, 4(*) = 0), the LLF in (18)~(20) would simplify to
f (sz) ’xn) = fl(s) (z§j>1 ‘xn), i.e., the floor component would
be zero and there would be only one measurement-related
component, which is target-generated; this equals the mea-
surement model of Section II-A.

We consider a generalization of the original PDAF to non-
linear and non-Gaussian state-space models. This generalized
PDAF is a particle filter based on the likelihood function in
(18)—(20) [2], [7]. For a distributed implementation, each sen-
sor s runs a local particle filter as described in Section II-B.
We again assume that the measurements ZSIS) at different sen-
sors are conditionally independent given x,. Then, the GLF
is the product of the LLFs (see (1)), and both the LC and the
proposed LC 2.0 can again be used for a distributed calcu-
lation of the GLF approximations f(z,|x,) involved in the
update step (3). However, a difference from conventional dis-
tributed particle filtering is that now we also have to take into
account the constant floor component lff’z) of the LLF (18).
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Fig. 5: Example (simulation result, using one sensor at the position
indicated by the red bullet) of a log-LLF for dimension M =2. This
log-LLF comprises seven measurement-related components, whereof
one is target-generated and the remaining six are clutter. The dark
blue background corresponds to the floor component )\(SO which
equals the minimum of the log-LLF.

B. Splitting Off the Floor

We now propose a modification of the LC that promotes
a sparse representation of the LLF (18) by splitting off the
floor component lfj)o. For practically relevant sensors, the

measurement-related components 15520 (xy,) are effectively sup-
ported in subregions of RM. This implies that in the comple-
mentary subregion, according to (18), the LLF f zn)]xn is

effectively equal to the floor component I ZJ Since moreover

the measurement-related LLF part Z ,flu(xn) is nonneg-

ative, it follows that the floor component ln o 1s approximately

equal to the minimum of the LLF f (zgf)

1)

‘xn), i.e., we effec-
tively have [, ; = miny cpm f (zgf) |xn), and consequently

£ %) > 150 Q1)

Let us now consider the log-LLF log f (zgf)|xn) and, in
particular, its minimum
s) s
A% £ min log f (). (22)
Using the fact that log is a strictly increasing function, we
have

)\Ef%—log( min f( (5)‘x

min ) —logll),  (23)

and we conclude from (21) that log f(zgf) ’xn) > logl(s0 o,
equivalently,

log £ (2 [xu) = A%p.- (24)
It follows from (24) that the log-LLF can be written as
log f (2 x) = Ay + AL (%), (25)

with a nonnegative function )\gf)(xn). (Note that, by contrast,
the “log-LLF floor” /\ff}) may be negative.) An example of a
log-LLF is shown in Fig. 5. Inserting (25) into (4) yields

Xn) = SZ AL+ A (x0)) = Xno + Aa(xn), (26)

with the log-GLF floor A\, o and the floorless log-GLF \,,(x,)
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defined as
1 5 ) 1
YA sy a2 (s)
Ao 2 2D AN, Anlxn) £ S S A (x,). @D

According to Section II-C, the LC-based distributed calcula-
tion of the approximate GLF f,(z,|x,) then amounts to a dis-
tributed calculation of the function L, (x,,) = /_\n,O + A (%0).
Obtaining a sparse LC expansion is facilitated by splitting off
the log-GLF floor A, ¢ from L, (x,) and performing separate
distributed calculations of 5\”70 and Xn(xn). Because /_\n70 is
(by (27)) the average of the S scalars )\S‘%, it can be approx-
imated in a distributed manner via a single instance of the
average consensus algorithm. The floorless log-GLF \,,(x,,),
on the other hand, is the average of the S functions )\,(f) (xn);
it can be approximated in a distributed manner via the LC.
Thus, the LC is used to calculate only the floorless log-LLF
An(x,,) rather than the entire function L, (x,).

For a practical implementation, each sensor s first de-
termines its log-LLF floor /\518,2) by finding the minimum
of log f (z,(f)‘xn). (In principle, the minimum can be ob-
tained from the closed-form expression (19); however, we ob-
served that a numerical computation according to (22) yielded
a slightly better tracking performance.) Then, a single in-
stance of the average consensus algorithm is used to calcu-
late the log-GLF floor A, o = £ 35| )\S)o Next, each sen-
sor s calculates its floorless log-LLF according to AL (xp) =
log f(zgf) |xn) — )\51572) (see (25)). The LC is now used to cal-
culate the floorless log-GLF X, (x,) = £ 325 | A (x,,). Fi-
nally, each sensor calculates L, (x,) according to (26), i.e.,
by adding its local estimates of /_\n>0 and A, (x,,).

C. Using LC 2.0

A simplification of the strategy described above is possible
when using LC 2.0—more specifically, when using a B-spline
dictionary and the adaptively determined ROI. Here, most of
the support of the log-LLF floor is removed implicitly by ap-
proximating the log-LLF only on the ROI R,,. Moreover, since
according to Section V-A R,, is a slightly extended version of
the effective support of the global posterior pdf f(x,|21.,), it
typically contains the target-generated component of the log-
LLF but excludes most of the clutter components. When a
B-spline dictionary is used on R, then, due to the localiza-
tion of the B-spline atoms, one obtains a sparse LC expansion
without splitting off the log-LLF floor.

On the other hand, also R,, typically includes subregions
that do not contain measurement-related LLF components
and thus belong to the support of the LLF floor. There-
fore, an even better sparsity can generally be obtained by
splitting off the log-LLF floor within R, and approximat-
ing the floorless log-GLF \,(x,) on R,. Differently from
(23), the log-LLF floor is now determined only on R,, i.e.,

5\5% 2 log (minxn ER., f(zgf) ‘xn)), and the calculation of the

floorless log-LLF Al (x,) = logf(zgf)’xn) — 5\51’0 and the

B-spline expansion of A (x,,) are performed on R,,.
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Fig. 6: Surveillance region, sensor network, and target trajectory used
in our simulation.

VIII. SIMULATION RESULTS

In this section, we evaluate and compare the performance
and communication cost of LC 2.0 relative to the conven-
tional LC. For a detailed understanding of LC 2.0, we study
the effects of the different aspects of LC 2.0—OMP, B-spline
dictionary, binary representation, uniform log-LLF sampling,
and adaptive ROI—separately.

A. Simulation Setup

We simulated a target moving in the 2-D plane. The tar-
get state is X, = (Tp.1 Tn2 Tn.1 Tn2)’, where 2, 1, T, 2 and
Zp,1, Tn,2 are the components of the target’s position and ve-
locity, respectively. The surveillance area is [—200 m, 200 m]
x [—200m, 200 m]. The evolution of the state x,, is modeled
as x, = Fx,,_1 + I'u,,, where the matrices F € R**% and
I' € R**2 are defined in [33], involving a time step param-
eter T that is chosen as 1s, and the driving noise u,, € R2
is iid, zero-mean, and Gaussian with covariance matrix 0312,
where o, = 1/3 m/s%. It follows that the state-transition pdf
f(xpn|xn—1) is Gaussian with mean Fx,,_; and covariance
matrix o2T'TT. The sensor network consists of S = 10 sen-
sors. Fig. 6 shows the surveillance area, the sensor network,
and the target trajectory used in our simulations.

Each sensor s produces a range (distance) and bearing (an-
gle) measurement given by

s S s 7 V)T S
29 = (%0 —p®| ¢(Xn, p™)) +v, (28

where %,, £ (%1 Tn.2)" is the position of the target, p(®) is the
position of sensor s, ¢ (X, p'*)) is the angle of %,, relative to
p(s), and v,(f) is iid, zero-mean, Gaussian measurement noise
with covariance matrix C, =diag{c?,0¢}, where 0,=5/3 m
and o, = 10/3°. Because z,(f) depends only on the position
X, the LLF is effectively given by f (zgf) |5cn), which implies
that our effective state-space dimension is M =2. A modified
measurement model will be used in Section VIII-H.

Each local particle filter uses J = 10000 particles. For ini-
tialization of the particles at time n = 0, the position X,, is
sampled uniformly at random in the surveillance area, the
target speed is sampled from a truncated Gaussian distribu-
tion with mean 2 m/s*> and standard deviation 1/3 m/s?, and
the target heading is sampled from a uniform distribution on
(—180°,180°]. The LC employs =20 consensus iterations.
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Fig. 7: Comparison of DPFs with OMP-based and LS-based calcu-
lation of the local expansion coefficients, using a B-spline dictionary
and uniform sampling in the entire surveillance area (these DPFs
are abbreviated as DPF-B-OMP and DPF-B-LS, respectively): (a)
Time-averaged localization RMSE versus number of nonzero local
expansion coefficients, Ls, (b) average number of nonzero coeffi-
cient estimates, N 5> versus time-averaged localization RMSE.

The tracking accuracy of the DPF is measured by the lo-
calization root mean square error (RMSE) and the track loss
percentage, based on 100 simulation runs performed over 50
time steps n (corresponding to a duration of 50s). The local-
ization RMSE is averaged over all sensors and all successful
simulation runs. Here, a simulation run is considered success-
ful if, for all time steps n > 11, the localization RMSE is
smaller than 5 m; otherwise it is considered a track loss and
included in the calculation of the track loss percentage.

B. OMP

First, we demonstrate the savings in communication that
are achieved by the OMP-based calculation of the local ex-
pansion coefficients described in Section III-B relative to the
LS-based calculation employed by the conventional LC. We
only consider a B-spline dictionary because the benefits of
using the OMP in conjunction with a Fourier dictionary were
already discussed in [8]. Our B-spline dictionary comprises
K =400 atoms located uniformly in the entire surveillance
area. For calculating the local expansion coefficients, we used
uniform sampling of the log-LLF on the entire surveillance
area (see Section III-C). That is, at this point, we do not use
the adaptive ROI described in Section V. Fig. 7a shows the
time-averaged localization RMSE (averaged over all time steps
n =1,...,50) versus the number of nonzero local expansion
coefficients, Ls € {2, ...,20}. Here, L, was chosen identically
for each sensor s; in the OMP case, it equals the number of
OMP iterations while in the LS case, we retained the L, lo-
cal coefficients with the largest absolute values. We conclude
from Fig. 7a that for L; >4, OMP leads to a smaller localiza-
tion RMSE than LS. Conversely, using OMP, a given RMSE
is obtained with a smaller L, than using LS. For example, an
RMSE of about 3.3 m is obtained with Ly =15 when using
LS as opposed to only Ly =6 when using OMP. To complete
the picture, we note that neither OMP nor LS produced any
track losses.

The smaller values of L, required by the OMP translate
into savings in the number of nonzero coefficient estimates
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Fig. 8: Comparison of DPFs using a B-spline dictionary and a Fourier
dictionary, both covering the entire surveillance area: (a) Localiza-
tion RMSE versus time, (b) average number of nonzero coefficient
estimates, [NV 5, Versus time.

A,S’“*s) [i]. Fig. 7b shows the average number of nonzero co-
efficient estimates, J\_/' 3 (averaged over all LC iterations ¢, all
sensors s, and all time steps n) versus the RMSE. For exam-
ple, the average number of nonzero coefficient estimates that
a sensor needs to broadcast for an RMSE of 3.3 m is reduced
by about one half if the OMP method is used instead of the LS
method. Because of this superiority of the OMP, we will not
further consider the LS method in our subsequent simulations
unless stated otherwise.

C. B-spline Dictionary

Next, we compare DPFs using a B-spline dictionary and
a Fourier dictionary (abbreviated DPF-B and DPF-F, respec-
tively). DPF-B uses K, =40 B-spline atoms in each coordi-
nate direction m = 1,2 and hence K = 1600 B-spline atoms
in total, which are regularly spaced in the entire surveillance
area. DPF-F uses a Fourier dictionary with K, =20 frequen-
cies in each coordinate direction and hence K =1681 Fourier
atoms in total. Note that K is similar in DPF-B and DPF-F. In
DPF-B, the log-LLF is sampled uniformly in the entire surveil-
lance area using (), = 160000 samples, whereas in DPF-F, it
is sampled at the J=10000 particles; these sampling schemes
produce the best results in the respective cases. (We note that
@r, can be chosen significantly smaller when the adaptive ROI
is implemented, see Section VIII-F.) Both DPF-B and DPF-F
use the OMP with L =5 iterations.

Fig. 8a shows the localization RMSE versus time ob-
tained with DPF-B, with DPF-F, and—as a performance
benchmark—with a centralized multisensor particle filter (ab-
breviated CPF). For n =1, the RMSE of DPF-F is 34 m and
thus much higher than that of DPF-B; this can be explained by
the fact that initially the particles are spread out over the en-
tire surveillance area and, thus, not sufficiently concentrated.
For n > 2, on the other hand, the RMSE of DPF-F is typi-
cally lower than that of DPF-B and effectively equals that of
CPF for n > 13. However, the track loss results are contrary
to the RMSE results: the track loss percentage of DPF-F was
measured as 2.2, whereas DPF-B did not produce any track
losses. Fig. 8b shows the number of nonzero coefficient esti-
mates, NV 4 broadcast on average by a sensor during one LC
iteration. The time-average of N 4 is about 35 for DPF-F but
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Fig. 9: Average binary communication costs of DPF-B variants using
different binary coding methods, as well as of DPF-F using the label
method.

only 22 for DPF-B, corresponding to a reduction by about
33%. This reduction due to the use of the B-spline dictionary
will be seen to be even larger when the adaptive ROI is im-
plemented, see Section VIII-F. Furthermore, N f; is seen to be
fairly constant in the case of DPF-B (which implies an ap-
proximately constant communication cost) whereas it exhibits
large time variations in the case of DPF-F.

D. Binary Representation

Our next simulation compares DPF-B variants using the
binary coding methods presented in Section VI. All these
DPF-B variants employ a binary wordlength of n, = 32
(the standard floating point format) and K = 1600 B-spline
atoms in the entire surveillance area. Fig. 9 shows the bi-

nary communication costs Npaive as well as leld)lcamr o ngsb)el I
() ite
and Nhypmecm averaged over all sensors s and all LC iter-

ations ¢. It can be seen that the binary communication cost
is smallest for the hyperrectangle method (its time-average is
only 790.71bit), somewhat higher for the label method, and
much higher for the indicator method. However, all are sig-
nificantly lower than the communication cost of naive coding,
Nhaive = Knp = 51200 bit. We conclude that the proposed bi-
nary coding methods lead to large savings in communication.
The inferiority of the indicator method relative to the label
and hyperrectangle methods is due to the large length of the
binary indicator vector (which comprises K = 1600 bits) and
will be seen in Section VIII-F to be less pronounced when the
adaptive ROI is implemented.

Fig. 9 also considers DPF-F with binary coding using the
label method, which is the most efficient coding method for
DPF-E It is seen that the binary communication cost of this
DPF-F variant is about twice that of DPF-B using the hyper-
rectangle method. Thus, using the B-spline dictionary instead
of the Fourier dictionary reduces the binary communication
cost by approximately one half.

E. Uniform Log-LLF Sampling

As mentioned in Section III-C, successful use of the B-
spline dictionary requires that the log-LLF is sampled uni-
formly rather than at the particles. We now verify this fact and
study the impact of the number of samples () on the tracking
performance. We consider two DPF-B variants, abbreviated as
DPF-B-P(J) and DPF-B-U(Q), in which the log-LLF is sam-

TABLE I: Tracking performance of DPF-B variants using log-LLF
sampling at the particles or uniformly in the entire surveillance area.

| DPF [ RMSE [m]  p [%] ]
DPF-B-P(10000) N/A 100
DPF-B-P(100000) N/A 100
DPF-B-U(1600) 2.35 0.2
DPF-B-U(10000) 1.70 0.2
DPF-B-U(40000) 1.73 0.2
DPF-B-U(160000) 1.70 0
10 __DPF-F
—DPFEB 1500
8 — DPF-B-ROI
CPF 1000
E =
= =) —DPF-F
= Z —DPF-B
B4 x 300 —DPF-B-ROI
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Fig. 10: Comparison of DPF-B with and without adaptive ROI: (a)
Localization RMSE, (b) average binary communication cost.

pled either at the particles using .J =10000 or 100000 particles
or uniformly in the entire surveillance area using Q@ = 1600,
10000, 40000, or 160000 samples. Both DPF-B variants use
K =1600 B-spline atoms in the entire surveillance area. Ta-
ble I presents the time-averaged localization RMSE and the
track loss percentage p. It is seen that sampling of the log-LLF
at the particles results in p=100% (thus, there are no “suc-
cessful” simulation runs from which to calculate the RMSE).
By contrast, uniform sampling yields excellent performance,
with p=0.2% or 0% and RMSE around 1.7 m for Q =10000
or larger.

F. Adaptive ROI

Next, we demonstrate the benefits of using the adaptive ROI
introduced in Section V-A. We consider a DPF-B variant, des-
ignated DPF-B-ROI, in which the B-spline dictionary covers
only the ROI R,,. The parameter ~y used in the calculation of
R, (see (14)) is 10. The numbers of B-spline atoms in the two
coordinate directions, Kn 1 and Kn 2, are chosen adaptively
according to (15) with K, 1 = kn2 = 1/5, ie., there are 5
atom centers per meter. The log-LLF is sampled uniformly on
R, with a density of one sample ger meter; thus, the total
number of samples is Q,, = = d'Vd'?, where the ROI interval
lengths d(l) and d( ) are determlned adaptively according to
(14). For initialization of the local particle filters at n = 1,
Rl is chosen as the entire surveillance area; furthermore,
K 1,1 =K 1,2 =20, corresponding to K7 =400 B-spline atoms,
and ()1 =160000. For n >2, the (adaptively determined) dic-
tionary size K, and number of log-LLF samples @),, are much
smaller than K3 and ()1, respectively: we observed K,, =4
and @,, around 1000 for almost all times and simulation runs.

Fig. 10 compares DPF-B-ROI and DPF-B, where the latter
employs K = 1600 B-spline atoms in the entire surveillance
area and uniform log-LLF sampling in the entire surveillance
area using @, = 160000 samples. In addition, Fig. 10 shows
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Fig. 11: Comparison of a DPF using LC2.0 (identical to DPF-B-ROI
in Fig. 10) with a DPF using the conventional LC and a DPF using
the conventional LC enhanced by the label method for binary coding:
(a) Localization RMSE, (b) average binary communication cost.

the results of DPF-F (using K = 1681 Fourier atoms on the
entire surveillance area and particle-based log-LLF sampling)
and of CPFE. All DPFs use the OMP with Ly = min{5, K}
iterations (note that Ly cannot be larger than K,,). For bi-
nary coding, DPF-B-ROI and DPF-B use the hyperrectangle
method and DPF-F uses the label method, all with binary
wordlength n, = 32. One can see in Fig. 10a that the local-
ization RMSE of DPF-B-ROI is typically significantly lower
than that of DPF-B. Moreover, for n larger than about 7, the
RMSE comes very close to that of DPF-F and, somewhat later,
also to that of CPF. The measured track loss percentage was
similar for DPF-B-ROI and DPF-B (0.2% and 0%, respec-
tively) but higher for DPF-F (2.2%). Fig. 10b shows that for
n > 3, the communication cost of DPF-B-ROI is only about
40% of that of DPF-B. We conclude that using the adaptive
ROI results in both a significant gain in tracking accuracy and
large savings in communication. The latter come in addition
to the savings relative to DPF-F previously reported in Section
VIII-C, which are again visible in Fig. 10b.

G. The Benefit of LC 2.0

After studying the individual aspects of LC 2.0 separately,
we now demonstrate the total reduction of communication cost
achieved with LC 2.0 relative to the conventional LC. Fig. 11
compares DPF-B-ROI (previously considered in Fig. 10, but
now dubbed DPF-LC2.0) with a DPF using the conventional
LC (dubbed DPF-LC). DPF-LC2.0 combines all the method-
ological constituents of LC 2.0—OMP, B-spline dictionary,
efficient binary coding, uniform log-LLF sampling, and adap-
tive ROI—as previously described for DPF-B-ROI in Section
VIII-F. By contrast, DPF-LC uses LS-based calculation of the
local expansion coefficients, retaining the Ly = 10 dominant
coefficients; a Fourier dictionary with K =1681 Fourier atoms
on the entire surveillance area; log-LLF sampling at the par-
ticles; and naive binary coding, i.e., each of the K = 1681
coefficients is represented by n, =32 bits. Here, the parame-
ters L; =10 and K =1681 were chosen because they achieve
a similar localization RMSE as DPF-LC2.0.

One can verify in Fig. 11a that, as intended, the localiza-
tion RMSE of DPF-LC2.0 is similar to that of DPF-LC. On the
other hand, the track loss percentage of DPF-LC2.0 and DPF-
LC was measured as 0.2% and 4.2%, respectively, and thus the
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Fig. 12: Comparison of a DPDAF using LC2.0 with and without floor
splitting, a DPDAF using a Fourier dictionary on the entire surveil-
lance area and the OMP [8], and a centralized PDAF: (a) Localization
RMSE, (b) average binary communication cost.

overall tracking performance of DPF-LC2.0 is considerably
better than that of DPF-LC. Fig. 11b shows that the commu-
nication cost of DPF-LC2.0 is only about 0.5% of that of DPF-
LC. A large part of this reduction is caused by the efficient
binary coding. To demonstrate this fact, Fig. 11b also considers
a DPF-LC variant, designated DPF-LC-label, that uses the la-
bel coding method instead of naive coding. The time-averaged
communication cost was measured as N =53792 bit for DPF-
LC, N =2341.59 bit for DPF-LC-label, and N = 295.70 bit
for DPF-LC2.0. Thus, relative to DPF-LC, efficient binary
coding reduces communication by a factor of about 20, and
a further reduction by a factor of about 8 is achieved by the
remaining constituents of LC 2.0 (OMP, B-spline dictionary,
and adaptive ROI).

H. LC2.0 for the DPDAF

Finally, we consider the use of LC2.0 within a distributed
PDAF (DPDAF) as proposed in Section VII. The simulation
setup is as before, except that now there are multiple measure-
ments per sensor with the following Farameters (cf. Section
VII-A): target detection probability Pds) = 0.95, clutter mean
p*) = 5, clutter pdf fcs)(zgf,zu) uniform on the surveillance
region. Fig. 12 compares the DPDAF using LC 2.0 (dubbed
DPDAF-LC2.0) with the DPDAF using a Fourier dictionary
on the entire surveillance area and the OMP as considered
in [8] (DPDAF-F) and with a centralized PDAF (CPDAF).
DPDAF-LC2.0 uses the adaptive ROI (with v = 10) and a
B-spline dictionary (with the number of atoms adaptively de-
termined using spacing K,1 = kpn2 = 1/5, and initialized
as K; =400), and it splits off the log-GLF floor within the
ROI as described in Section VII-C. Both DPDAF-LC2.0 and
DPDAF-F use L, =min{5, K,,} OMP iterations and the best
binary encoding method (hyperrectangle and label method, re-
spectively). DPDAF-F uses K =441 Fourier atoms, which was
observed to be the minimal number of atoms yielding a track
loss percentage p below 5%. Fig. 12 also considers a vari-
ant of DPDAF-LC2.0 that does not split off the log-GLF floor
(dubbed DPDAF-LC2.0-nosplit).

We can see in Fig. 12a that for n > 15, the localization
RMSE of all four methods is almost equal. At n =1, the RMSE
of DPDAF-LC2.0 is significantly lower than that of DPDAF-
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F, whereas for n between 3 and 11, it is somewhat higher.
The track loss percentage was measured as p=0.4% for both
DPDAF-LC2.0 and DPDAF-F. The RMSE of DPDAF-LC2.0-
nosplit is higher than that of DPDAF-LC2.0 for n=1,2 and
almost as high as that of DPDAF-F for n = 1. Moreover,
the track loss percentage of DPDAF-LC2.0-nosplit was mea-
sured as 4.8% and is thus significantly higher than that of
DPDAF-LC2.0. Hence, splitting off the log-GLF floor im-
proves the tracking accuracy. Fig. 12b shows that the com-
munication cost of DPDAF-LC2.0 is only about half that of
DPDAF-F. This reduction is due to the use of the B-spline
dictionary and the adaptive ROI. Furthermore, the communi-
cation cost of DPDAF-LC2.0 is seen to be lower than that
of DPDAF-LC2.0-nosplit, especially for n < 4. Indeed, dur-
ing this initial phase, splitting off the log-GLF floor yields a
faster convergence of the ROI (we recall that at time n =1,
the ROI is initialized as the entire surveillance area) and, in
turn, a lower communication cost.

IX. CONCLUSION

The likelihood consensus (LC) scheme enables approxi-
mately Bayes-optimal distributed target tracking in nonlinear
and non-Gaussian sensor networks. We proposed an evolved
“LC 2.0” scheme with significantly reduced communication
cost. LC 2.0 incorporates several modifications of the origi-
nal LC scheme including the use of the OMP and a B-spline
dictionary, efficient binary representations, and a distributed
adaptation of the region of interest. Simulation results demon-
strated savings in communication of about a factor of 200,
without a loss in tracking performance.

An interesting direction for future work is the application
of the proposed LC 2.0 scheme to other distributed Bayesian
filtering frameworks in which the global likelihood function
factors into the local likelihood functions. In particular, the
LC-based distributed Bernoulli filter presented in [23] can be
easily adapted to LC 2.0.
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